IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57915-2.html
   My bibliography  Save this article

Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β

Author

Listed:
  • Tyler M. Weaver

    (University of Kansas Medical Center
    University of Kansas Medical Center)

  • Benjamin J. Ryan

    (University of Kansas Medical Center)

  • Spencer H. Thompson

    (University of Kansas Medical Center)

  • Adil S. Hussen

    (University of Kansas Medical Center)

  • Jonah J. Spencer

    (University of Kansas Medical Center)

  • Zhen Xu

    (University of Iowa Carver College of Medicine)

  • Nicholas J. Schnicker

    (University of Iowa Carver College of Medicine
    University of Iowa Carver College of Medicine)

  • Bret D. Freudenthal

    (University of Kansas Medical Center
    University of Kansas Medical Center
    University of Kansas Cancer Center)

Abstract

Single-strand breaks (SSBs) are one of the most prevalent forms of DNA damage found in the chromatinized genome and are repaired by single-strand break repair (SSBR) or base excision repair (BER). DNA polymerase beta (Pol β) is the primary enzyme responsible for processing the 1-nt gap intermediate in chromatin during SSBR and BER. To date, the mechanism used by Pol β to process a 1-nt gap in the context of chromatin remains poorly understood. Here, we use biochemical assays and cryogenic electron microscopy (cryo-EM) to determine the kinetic and structural basis of gap-filling DNA synthesis in the nucleosome by Pol β. This work establishes that Pol β uses a global DNA sculpting mechanism for processing 1-nt gaps in the nucleosome during SSBR and BER, providing fundamental insight into DNA repair in chromatin.

Suggested Citation

  • Tyler M. Weaver & Benjamin J. Ryan & Spencer H. Thompson & Adil S. Hussen & Jonah J. Spencer & Zhen Xu & Nicholas J. Schnicker & Bret D. Freudenthal, 2025. "Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57915-2
    DOI: 10.1038/s41467-025-57915-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57915-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57915-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huifen Cao & Lorena Salazar-García & Fan Gao & Thor Wahlestedt & Chun-Lin Wu & Xueer Han & Ye Cai & Dongyang Xu & Fang Wang & Lu Tang & Natalie Ricciardi & DingDing Cai & Huifang Wang & Mario P. S. Ch, 2019. "Novel approach reveals genomic landscapes of single-strand DNA breaks with nucleotide resolution in human cells," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Gabrielle J. Grundy & Luis M. Polo & Zhihong Zeng & Stuart L. Rulten & Nicolas C. Hoch & Pathompong Paomephan & Yingqi Xu & Steve M. Sweet & Alan W. Thorne & Antony W. Oliver & Steve J. Matthews & Lau, 2016. "PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
    3. Natasha Ramakrishnan & Tyler M. Weaver & Lindsey N. Aubuchon & Ayda Woldegerima & Taylor Just & Kevin Song & Alessandro Vindigni & Bret D. Freudenthal & Priyanka Verma, 2024. "Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Mengtian Ren & Fabian Gut & Yilan Fan & Jingke Ma & Xiajing Shan & Aysenur Yikilmazsoy & Mariia Likhodeeva & Karl-Peter Hopfner & Chuanzheng Zhou, 2024. "Structural basis for human OGG1 processing 8-oxodGuo within nucleosome core particles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. George E. Ronson & Ann Liza Piberger & Martin R. Higgs & Anna L. Olsen & Grant S. Stewart & Peter J. McHugh & Eva Petermann & Nicholas D. Lakin, 2018. "PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. Tyler M. Weaver & Nicole M. Hoitsma & Jonah J. Spencer & Lokesh Gakhar & Nicholas J. Schnicker & Bret D. Freudenthal, 2022. "Structural basis for APE1 processing DNA damage in the nucleosome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Karolin Luger & Armin W. Mäder & Robin K. Richmond & David F. Sargent & Timothy J. Richmond, 1997. "Crystal structure of the nucleosome core particle at 2.8 Å resolution," Nature, Nature, vol. 389(6648), pages 251-260, September.
    8. Cameron Cordero & Kavi P. M. Mehta & Tyler M. Weaver & Justin A. Ling & Bret D. Freudenthal & David Cortez & Steven A. Roberts, 2024. "Contributing factors to the oxidation-induced mutational landscape in human cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Simon D. Schwarz & Jianming Xu & Kapila Gunasekera & David Schürmann & Cathrine B. Vågbø & Elena Ferrari & Geir Slupphaug & Michael O. Hottiger & Primo Schär & Roland Steinacher, 2024. "Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Cameron Cordero & Kavi P. M. Mehta & Tyler M. Weaver & Justin A. Ling & Bret D. Freudenthal & David Cortez & Steven A. Roberts, 2024. "Contributing factors to the oxidation-induced mutational landscape in human cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Namrata Kumar & Arjan F. Theil & Vera Roginskaya & Yasmin Ali & Michael Calderon & Simon C. Watkins & Ryan P. Barnes & Patricia L. Opresko & Alex Pines & Hannes Lans & Wim Vermeulen & Bennett Houten, 2022. "Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Wilfried Engl & Aliz Kunstar-Thomas & Siyi Chen & Woei Shyuan Ng & Hendrik Sielaff & Ziqing Winston Zhao, 2024. "Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    9. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Fritz Nagae & Yasuto Murayama & Tsuyoshi Terakawa, 2024. "Molecular mechanism of parental H3/H4 recycling at a replication fork," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Zhen Huang & Ivanete De O. Furo & Jing Liu & Valentina Peona & Anderson J. B. Gomes & Wan Cen & Hao Huang & Yanding Zhang & Duo Chen & Ting Xue & Qiujin Zhang & Zhicao Yue & Quanxi Wang & Lingyu Yu & , 2022. "Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Mariarosaria Rosa & Ryan P. Barnes & Ariana C. Detwiler & Prasanth R. Nyalapatla & Peter Wipf & Patricia L. Opresko, 2025. "OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    14. Marko Dunjić & Felix Jonas & Gilad Yaakov & Roye More & Yoav Mayshar & Yoach Rais & Ayelet-Hashahar Orenbuch & Saifeng Cheng & Naama Barkai & Yonatan Stelzer, 2023. "Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Rina Hirano & Haruhiko Ehara & Tomoya Kujirai & Tamami Uejima & Yoshimasa Takizawa & Shun-ichi Sekine & Hitoshi Kurumizaka, 2022. "Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Timothy A. Daugird & Yu Shi & Katie L. Holland & Hosein Rostamian & Zhe Liu & Luke D. Lavis & Joseph Rodriguez & Brian D. Strahl & Wesley R. Legant, 2024. "Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Jaeyoon Lee & Meiling Wu & James T. Inman & Gundeep Singh & Seong ha Park & Joyce H. Lee & Robert M. Fulbright & Yifeng Hong & Joshua Jeong & James M. Berger & Michelle D. Wang, 2023. "Chromatinization modulates topoisomerase II processivity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Zengqi Wen & Ruixin Fang & Ruxin Zhang & Xinqian Yu & Fanli Zhou & Haizhen Long, 2025. "Nucleosome wrapping states encode principles of 3D genome organization," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    19. Naoki Horikoshi & Ryosuke Miyake & Chizuru Sogawa-Fujiwara & Mitsuo Ogasawara & Yoshimasa Takizawa & Hitoshi Kurumizaka, 2025. "Cryo-EM structures of the BAF-Lamin A/C complex bound to nucleosomes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    20. Nithya Ramakrishnan & Sibi Raj B Pillai & Ranjith Padinhateeri, 2022. "High fidelity epigenetic inheritance: Information theoretic model predicts threshold filling of histone modifications post replication," PLOS Computational Biology, Public Library of Science, vol. 18(2), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57915-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.