IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59994-7.html
   My bibliography  Save this article

Nucleosome dynamics render heterochromatin accessible in living human cells

Author

Listed:
  • Hemant K. Prajapati

    (National Institutes of Health)

  • Zhuwei Xu

    (National Institutes of Health)

  • Peter R. Eriksson

    (National Institutes of Health)

  • David J. Clark

    (National Institutes of Health)

Abstract

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed. It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome. However, the evidence for this model derives primarily from experiments with isolated nuclei, in which chromatin remodeling has ceased, resulting in a static chromatin structure. Here, using a DNA methyltransferase to measure accessibility in vivo, we show that both euchromatin and heterochromatin are fully accessible in living human cells, whereas centromeric α-satellite chromatin is partly inaccessible. We conclude that all nucleosomes in euchromatin and heterochromatin are highly dynamic in living cells, except for nucleosomes in centromeric chromatin.

Suggested Citation

  • Hemant K. Prajapati & Zhuwei Xu & Peter R. Eriksson & David J. Clark, 2025. "Nucleosome dynamics render heterochromatin accessible in living human cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59994-7
    DOI: 10.1038/s41467-025-59994-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59994-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59994-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59994-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.