IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57886-4.html
   My bibliography  Save this article

A globular protein exhibits rare phase behavior and forms chemically regulated orthogonal condensates in cells

Author

Listed:
  • Jinglei Nie

    (Westlake University
    Westlake University)

  • Xinyi Zhang

    (Westlake University
    Hamburg University of Technology)

  • Zhijuan Hu

    (Westlake University
    Westlake University
    Westlake University)

  • Wei Wang

    (Hamburg University of Technology)

  • Martin A. Schroer

    (University of Duisburg-Essen
    Hamburg Outstation c/o DESY)

  • Jie Ren

    (Chinese Academy of Agricultural Sciences)

  • Dmitri Svergun

    (Hamburg Outstation c/o DESY
    BIOSAXS GmbH)

  • Anyang Chen

    (Westlake University)

  • Peiguo Yang

    (Westlake University
    Westlake University)

  • An-Ping Zeng

    (Westlake University
    Westlake University
    Hamburg University of Technology
    Westlake University)

Abstract

Proteins with chemically regulatable phase separation are of great interest in the fields of biomolecular condensates and synthetic biology. Intrinsically disordered proteins (IDPs) are the dominating building blocks of biomolecular condensates which often lack orthogonality and small-molecule regulation desired to create synthetic biomolecular condensates or membraneless organelles (MLOs). Here, we discover a well-folded globular protein, lipoate-protein ligase A (LplA) from E. coli involved in lipoylation of enzymes essential for one-carbon and energy metabolisms, that exhibits structural homomeric oligomerization and a rare LCST-type reversible phase separation in vitro. In both E. coli and human U2OS cells, LplA can form orthogonal condensates, which can be specifically dissolved by its natural substrate, the small molecule lipoic acid and its analogue lipoamide. The study of LplA phase behavior and its regulatability expands our understanding and toolkit of small-molecule regulatable protein phase behavior with impacts on biomedicine and synthetic biology.

Suggested Citation

  • Jinglei Nie & Xinyi Zhang & Zhijuan Hu & Wei Wang & Martin A. Schroer & Jie Ren & Dmitri Svergun & Anyang Chen & Peiguo Yang & An-Ping Zeng, 2025. "A globular protein exhibits rare phase behavior and forms chemically regulated orthogonal condensates in cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57886-4
    DOI: 10.1038/s41467-025-57886-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57886-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57886-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin S. Schuster & Ellen H. Reed & Ranganath Parthasarathy & Craig N. Jahnke & Reese M. Caldwell & Jessica G. Bermudez & Holly Ramage & Matthew C. Good & Daniel A. Hammer, 2018. "Controllable protein phase separation and modular recruitment to form responsive membraneless organelles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Hector Garcia-Seisdedos & Charly Empereur-Mot & Nadav Elad & Emmanuel D. Levy, 2017. "Proteins evolve on the edge of supramolecular self-assembly," Nature, Nature, vol. 548(7666), pages 244-247, August.
    3. W. Michael Babinchak & Benjamin K. Dumm & Sarah Venus & Solomiia Boyko & Andrea A. Putnam & Eckhard Jankowsky & Witold K. Surewicz, 2020. "Small molecules as potent biphasic modulators of protein liquid-liquid phase separation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Anand V. Sastry & Ye Gao & Richard Szubin & Ying Hefner & Sibei Xu & Donghyuk Kim & Kumari Sonal Choudhary & Laurence Yang & Zachary A. King & Bernhard O. Palsson, 2019. "The Escherichia coli transcriptome mostly consists of independently regulated modules," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Amy R. Strom & Alexander V. Emelyanov & Mustafa Mir & Dmitry V. Fyodorov & Xavier Darzacq & Gary H. Karpen, 2017. "Phase separation drives heterochromatin domain formation," Nature, Nature, vol. 547(7662), pages 241-245, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Ellen H. Brumbaugh-Reed & Yang Gao & Kazuhiro Aoki & Jared E. Toettcher, 2024. "Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hao-Yu Chuang & Ruei-Yu He & Yung-An Huang & Wan-Ting Hsu & Ya-Jen Cheng & Zheng-Rong Guo & Niaz Wali & Ing-Shouh Hwang & Jiun-Jie Shie & Joseph Jen-Tse Huang, 2024. "Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Ting Peng & Yingping Hou & Haowei Meng & Yong Cao & Xiaotian Wang & Lumeng Jia & Qing Chen & Yang Zheng & Yujie Sun & Hebing Chen & Tingting Li & Cheng Li, 2023. "Mapping nucleolus-associated chromatin interactions using nucleolus Hi-C reveals pattern of heterochromatin interactions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Hao Yan & Zhenguo Xin & Ziwei Sang & Xingwang Li & Jia Xie & Jiale Wu & Shen Pang & Ying Wen & Weishan Wang, 2025. "A rational multi-target combination strategy for synergistic improvement of non-ribosomal peptide production," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    6. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Jessica Z. Zhao & Jing Xia & Clifford P. Brangwynne, 2024. "Chromatin compaction during confined cell migration induces and reshapes nuclear condensates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Wenqi Sun & Qianhua Dong & Xueqing Li & Jinxin Gao & Xianwen Ye & Chunyi Hu & Fei Li & Yong Chen, 2024. "The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Arianna Miano & Kevin Rychel & Andrew Lezia & Anand Sastry & Bernhard Palsson & Jeff Hasty, 2023. "High-resolution temporal profiling of E. coli transcriptional response," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Catherine Naughton & Covadonga Huidobro & Claudia R. Catacchio & Adam Buckle & Graeme R. Grimes & Ryu-Suke Nozawa & Stefania Purgato & Mariano Rocchi & Nick Gilbert, 2022. "Human centromere repositioning activates transcription and opens chromatin fibre structure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Hyun-Soo Kim & Benjamin Roche & Sonali Bhattacharjee & Leila Todeschini & An-Yun Chang & Christopher Hammell & André Verdel & Robert A. Martienssen, 2024. "Clr4SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Hemant K. Prajapati & Zhuwei Xu & Peter R. Eriksson & David J. Clark, 2025. "Nucleosome dynamics render heterochromatin accessible in living human cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Zhaowei Yu & Qi Wang & Qichen Zhang & Yawen Tian & Guo Yan & Jidong Zhu & Guangya Zhu & Yong Zhang, 2024. "Decoding the genomic landscape of chromatin-associated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Lidice González & Daniel Kolbin & Christian Trahan & Célia Jeronimo & François Robert & Marlene Oeffinger & Kerry Bloom & Stephen W. Michnick, 2023. "Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Wenwen Yu & Ke Jin & Dandan Wang & Nankai Wang & Yangyang Li & Yanfeng Liu & Jianghua Li & Guocheng Du & Xueqin Lv & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2024. "De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Lennart Enders & Marton Siklos & Jan Borggräfe & Stefan Gaussmann & Anna Koren & Monika Malik & Tatjana Tomek & Michael Schuster & Jiří Reiniš & Elisa Hahn & Andrea Rukavina & Andreas Reicher & Tamara, 2023. "Pharmacological perturbation of the phase-separating protein SMNDC1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Fleurie M. Kelley & Anas Ani & Emily G. Pinlac & Bridget Linders & Bruna Favetta & Mayur Barai & Yuchen Ma & Arjun Singh & Gregory L. Dignon & Yuwei Gu & Benjamin S. Schuster, 2025. "Controlled and orthogonal partitioning of large particles into biomolecular condensates," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    18. Ashish Joshi & Anuja Walimbe & Snehasis Sarkar & Lisha Arora & Gaganpreet Kaur & Prince Jhandai & Dhruba Chatterjee & Indranil Banerjee & Samrat Mukhopadhyay, 2024. "Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Vivian Yeong & Jou-wen Wang & Justin M. Horn & Allie C. Obermeyer, 2022. "Intracellular phase separation of globular proteins facilitated by short cationic peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57886-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.