IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65486-5.html
   My bibliography  Save this article

Structural basis of cyclobutane pyrimidine dimer recognition by UV-DDB in the nucleosome

Author

Listed:
  • Syota Matsumoto

    (The University of Tokyo)

  • Yoshimasa Takizawa

    (The University of Tokyo
    The University of Tokyo)

  • Mitsuo Ogasawara

    (The University of Tokyo)

  • Kana Hashimoto

    (The University of Tokyo)

  • Lumi Negishi

    (The University of Tokyo)

  • Wenjie Xu

    (The University of Tokyo
    The University of Tokyo)

  • Haruna Tachibana

    (The University of Tokyo
    The University of Tokyo)

  • Junpei Yamamoto

    (Osaka University)

  • Shigenori Iwai

    (Osaka University)

  • Kaoru Sugasawa

    (Kobe University)

  • Hitoshi Kurumizaka

    (The University of Tokyo
    The University of Tokyo
    RIKEN Center for Biosystems Dynamics Research)

Abstract

In mammalian global genomic nucleotide excision repair, UV-DDB plays a central role in recognizing DNA lesions, such as 6-4 photoproducts and cyclobutane pyrimidine dimers, within chromatin. In the present study, we perform cryo-electron microscopy analyses coupled with chromatin-immunoprecipitation to reveal that the cellular UV-DDB binds to UV-damaged DNA lesions in a chromatin unit, the nucleosome, at a position approximately 20 base-pairs from the nucleosomal dyad in human cells. An alternative analysis of the in vitro reconstituted UV-DDB-cyclobutane pyrimidine dimer nucleosome structure demonstrates that the DDB2 subunit of UV-DDB specifically recognizes the cyclobutane pyrimidine dimer lesion at this position on the nucleosome. We also determine the structures of UV-DDB bound to DNA lesions at other positions in purified cellular human nucleosomes. These cellular and reconstituted UV-DDB-nucleosome complex structures provide important evidence for understanding the mechanism by which UV lesions in chromatin are recognized and repaired in mammalian cells.

Suggested Citation

  • Syota Matsumoto & Yoshimasa Takizawa & Mitsuo Ogasawara & Kana Hashimoto & Lumi Negishi & Wenjie Xu & Haruna Tachibana & Junpei Yamamoto & Shigenori Iwai & Kaoru Sugasawa & Hitoshi Kurumizaka, 2025. "Structural basis of cyclobutane pyrimidine dimer recognition by UV-DDB in the nucleosome," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65486-5
    DOI: 10.1038/s41467-025-65486-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65486-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65486-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tomoya Kujirai & Junko Kato & Kyoka Yamamoto & Seiya Hirai & Takeru Fujii & Kazumitsu Maehara & Akihito Harada & Lumi Negishi & Mitsuo Ogasawara & Yuki Yamaguchi & Yasuyuki Ohkawa & Yoshimasa Takizawa, 2025. "Multiple structures of RNA polymerase II isolated from human nuclei by ChIP-CryoEM analysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Marjo-Riitta Puumalainen & Davor Lessel & Peter Rüthemann & Nina Kaczmarek & Karin Bachmann & Kristijan Ramadan & Hanspeter Naegeli, 2014. "Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    3. Yan Han & Alexis A Reyes & Sara Malik & Yuan He, 2020. "Cryo-EM structure of SWI/SNF complex bound to a nucleosome," Nature, Nature, vol. 579(7799), pages 452-455, March.
    4. Karolin Luger & Armin W. Mäder & Robin K. Richmond & David F. Sargent & Timothy J. Richmond, 1997. "Crystal structure of the nucleosome core particle at 2.8 Å resolution," Nature, Nature, vol. 389(6648), pages 251-260, September.
    5. Syota Matsumoto & Simone Cavadini & Richard D. Bunker & Ralph S. Grand & Alessandro Potenza & Julius Rabl & Junpei Yamamoto & Andreas D. Schenk & Dirk Schübeler & Shigenori Iwai & Kaoru Sugasawa & Hit, 2019. "DNA damage detection in nucleosomes involves DNA register shifting," Nature, Nature, vol. 571(7763), pages 79-84, July.
    6. Syota Matsumoto & Simone Cavadini & Richard D. Bunker & Ralph S. Grand & Alessandro Potenza & Julius Rabl & Junpei Yamamoto & Andreas D. Schenk & Dirk Schübeler & Shigenori Iwai & Kaoru Sugasawa & Hit, 2019. "Publisher Correction: DNA damage detection in nucleosomes involves DNA register shifting," Nature, Nature, vol. 571(7764), pages 6-6, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrata Kumar & Arjan F. Theil & Vera Roginskaya & Yasmin Ali & Michael Calderon & Simon C. Watkins & Ryan P. Barnes & Patricia L. Opresko & Alex Pines & Hannes Lans & Wim Vermeulen & Bennett Houten, 2022. "Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Tyler M. Weaver & Nicole M. Hoitsma & Jonah J. Spencer & Lokesh Gakhar & Nicholas J. Schnicker & Bret D. Freudenthal, 2022. "Structural basis for APE1 processing DNA damage in the nucleosome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Charlotte Blessing & Katja Apelt & Diana Heuvel & Claudia Gonzalez-Leal & Magdalena B. Rother & Melanie Woude & Román González-Prieto & Adi Yifrach & Avital Parnas & Rashmi G. Shah & Tia Tyrsett Kuo &, 2022. "XPC–PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Anna Sefer & Eleni Kallis & Tobias Eilert & Carlheinz Röcker & Olga Kolesnikova & David Neuhaus & Sebastian Eustermann & Jens Michaelis, 2022. "Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Corina Maritz & Reihaneh Khaleghi & Michelle N. Yancoskie & Sarah Diethelm & Sonja Brülisauer & Natalia Santos Ferreira & Yang Jiang & Shana J. Sturla & Hanspeter Naegeli, 2023. "ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Un Seng Chio & Eugene Palovcak & Anton A. A. Smith & Henriette Autzen & Elise N. Muñoz & Zanlin Yu & Feng Wang & David A. Agard & Jean-Paul Armache & Geeta J. Narlikar & Yifan Cheng, 2024. "Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Wilfried Engl & Aliz Kunstar-Thomas & Siyi Chen & Woei Shyuan Ng & Hendrik Sielaff & Ziqing Winston Zhao, 2024. "Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Mingyue Guo & Fengjun Yang & Lijuan Zhu & Leilei Wang & Zhichao Li & Zhenyu Qi & Vasileios Fotopoulos & Jingquan Yu & Jie Zhou, 2024. "Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Laurel E. Kelnhofer-Millevolte & Julian R. Smith & Daniel H. Nguyen & Lea S. Wilson & Hannah C. Lewis & Edward A. Arnold & Mia R. Brinkley & Kihye Shin & Jin-Hyun Ahn & Eui Tae Kim & Katarzyna Kulej &, 2025. "Human cytomegalovirus induces neuronal gene expression through IE1 for viral maturation," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    12. Hemant K. Prajapati & Zhuwei Xu & Peter R. Eriksson & David J. Clark, 2025. "Nucleosome dynamics render heterochromatin accessible in living human cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Timothy A. Daugird & Yu Shi & Katie L. Holland & Hosein Rostamian & Zhe Liu & Luke D. Lavis & Joseph Rodriguez & Brian D. Strahl & Wesley R. Legant, 2024. "Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Jaeyoon Lee & Meiling Wu & James T. Inman & Gundeep Singh & Seong ha Park & Joyce H. Lee & Robert M. Fulbright & Yifeng Hong & Joshua Jeong & James M. Berger & Michelle D. Wang, 2023. "Chromatinization modulates topoisomerase II processivity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Nithya Ramakrishnan & Sibi Raj B Pillai & Ranjith Padinhateeri, 2022. "High fidelity epigenetic inheritance: Information theoretic model predicts threshold filling of histone modifications post replication," PLOS Computational Biology, Public Library of Science, vol. 18(2), pages 1-22, February.
    16. Dhurjhoti Saha & Solomon Hailu & Arjan Hada & Junwoo Lee & Jie Luo & Jeff A. Ranish & Yuan-chi Lin & Kyle Feola & Jim Persinger & Abhinav Jain & Bin Liu & Yue Lu & Payel Sen & Blaine Bartholomew, 2023. "The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Tyler M. Weaver & Benjamin J. Ryan & Spencer H. Thompson & Adil S. Hussen & Jonah J. Spencer & Zhen Xu & Nicholas J. Schnicker & Bret D. Freudenthal, 2025. "Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    18. Jiayi Fan & Andrew T. Moreno & Alexander S. Baier & Joseph J. Loparo & Craig L. Peterson, 2022. "H2A.Z deposition by SWR1C involves multiple ATP-dependent steps," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Dian Spakman & Tinka V. M. Clement & Andreas S. Biebricher & Graeme A. King & Manika I. Singh & Ian D. Hickson & Erwin J. G. Peterman & Gijs J. L. Wuite, 2022. "PICH acts as a force-dependent nucleosome remodeler," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Tomoya Kujirai & Junko Kato & Kyoka Yamamoto & Seiya Hirai & Takeru Fujii & Kazumitsu Maehara & Akihito Harada & Lumi Negishi & Mitsuo Ogasawara & Yuki Yamaguchi & Yasuyuki Ohkawa & Yoshimasa Takizawa, 2025. "Multiple structures of RNA polymerase II isolated from human nuclei by ChIP-CryoEM analysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65486-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.