IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33057-7.html
   My bibliography  Save this article

Structural basis for APE1 processing DNA damage in the nucleosome

Author

Listed:
  • Tyler M. Weaver

    (University of Kansas Medical Center
    University of Kansas Medical Center)

  • Nicole M. Hoitsma

    (University of Kansas Medical Center)

  • Jonah J. Spencer

    (University of Kansas Medical Center)

  • Lokesh Gakhar

    (University of Iowa Carver College of Medicine
    University of Iowa Carver College of Medicine
    Massachusetts Institute of Technology)

  • Nicholas J. Schnicker

    (University of Iowa Carver College of Medicine)

  • Bret D. Freudenthal

    (University of Kansas Medical Center
    University of Kansas Medical Center
    University of Kansas Cancer Center)

Abstract

Genomic DNA is continually exposed to endogenous and exogenous factors that promote DNA damage. Eukaryotic genomic DNA is packaged into nucleosomes, which present a barrier to accessing and effectively repairing DNA damage. The mechanisms by which DNA repair proteins overcome this barrier to repair DNA damage in the nucleosome and protect genomic stability is unknown. Here, we determine how the base excision repair (BER) endonuclease AP-endonuclease 1 (APE1) recognizes and cleaves DNA damage in the nucleosome. Kinetic assays determine that APE1 cleaves solvent-exposed AP sites in the nucleosome with 3 − 6 orders of magnitude higher efficiency than occluded AP sites. A cryo-electron microscopy structure of APE1 bound to a nucleosome containing a solvent-exposed AP site reveal that APE1 uses a DNA sculpting mechanism for AP site recognition, where APE1 bends the nucleosomal DNA to access the AP site. Notably, additional biochemical and structural characterization of occluded AP sites identify contacts between the nucleosomal DNA and histone octamer that prevent efficient processing of the AP site by APE1. These findings provide a rationale for the position-dependent activity of BER proteins in the nucleosome and suggests the ability of BER proteins to sculpt nucleosomal DNA drives efficient BER in chromatin.

Suggested Citation

  • Tyler M. Weaver & Nicole M. Hoitsma & Jonah J. Spencer & Lokesh Gakhar & Nicholas J. Schnicker & Bret D. Freudenthal, 2022. "Structural basis for APE1 processing DNA damage in the nucleosome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33057-7
    DOI: 10.1038/s41467-022-33057-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33057-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33057-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karolin Luger & Armin W. Mäder & Robin K. Richmond & David F. Sargent & Timothy J. Richmond, 1997. "Crystal structure of the nucleosome core particle at 2.8 Å resolution," Nature, Nature, vol. 389(6648), pages 251-260, September.
    2. Syota Matsumoto & Simone Cavadini & Richard D. Bunker & Ralph S. Grand & Alessandro Potenza & Julius Rabl & Junpei Yamamoto & Andreas D. Schenk & Dirk Schübeler & Shigenori Iwai & Kaoru Sugasawa & Hit, 2019. "DNA damage detection in nucleosomes involves DNA register shifting," Nature, Nature, vol. 571(7763), pages 79-84, July.
    3. Syota Matsumoto & Simone Cavadini & Richard D. Bunker & Ralph S. Grand & Alessandro Potenza & Julius Rabl & Junpei Yamamoto & Andreas D. Schenk & Dirk Schübeler & Shigenori Iwai & Kaoru Sugasawa & Hit, 2019. "Publisher Correction: DNA damage detection in nucleosomes involves DNA register shifting," Nature, Nature, vol. 571(7764), pages 6-6, July.
    4. Svetlana O. Dodonova & Fangjie Zhu & Christian Dienemann & Jussi Taipale & Patrick Cramer, 2020. "Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function," Nature, Nature, vol. 580(7805), pages 669-672, April.
    5. Clifford D. Mol & Tadahide Izumi & Sankar Mitra & John A. Tainer, 2000. "DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination," Nature, Nature, vol. 403(6768), pages 451-456, January.
    6. Tung-Chang Liu & Chun-Ting Lin & Kai-Cheng Chang & Kai-Wei Guo & Shuying Wang & Jhih-Wei Chu & Yu-Yuan Hsiao, 2021. "APE1 distinguishes DNA substrates in exonucleolytic cleavage by induced space-filling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Clifford D. Mol & Tadahide Izumi & Sankar Mitra & John A. Tainer, 2000. "Erratum: DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination," Nature, Nature, vol. 404(6777), pages 525-525, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrata Kumar & Arjan F. Theil & Vera Roginskaya & Yasmin Ali & Michael Calderon & Simon C. Watkins & Ryan P. Barnes & Patricia L. Opresko & Alex Pines & Hannes Lans & Wim Vermeulen & Bennett Houten, 2022. "Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Charlotte Blessing & Katja Apelt & Diana Heuvel & Claudia Gonzalez-Leal & Magdalena B. Rother & Melanie Woude & Román González-Prieto & Adi Yifrach & Avital Parnas & Rashmi G. Shah & Tia Tyrsett Kuo &, 2022. "XPC–PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Anna Sefer & Eleni Kallis & Tobias Eilert & Carlheinz Röcker & Olga Kolesnikova & David Neuhaus & Sebastian Eustermann & Jens Michaelis, 2022. "Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Corina Maritz & Reihaneh Khaleghi & Michelle N. Yancoskie & Sarah Diethelm & Sonja Brülisauer & Natalia Santos Ferreira & Yang Jiang & Shana J. Sturla & Hanspeter Naegeli, 2023. "ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Simon D. Schwarz & Jianming Xu & Kapila Gunasekera & David Schürmann & Cathrine B. Vågbø & Elena Ferrari & Geir Slupphaug & Michael O. Hottiger & Primo Schär & Roland Steinacher, 2024. "Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Bieke Decaesteker & Amber Louwagie & Siebe Loontiens & Fanny De Vloed & Sarah-Lee Bekaert & Juliette Roels & Suzanne Vanhauwaert & Sara De Brouwer & Ellen Sanders & Alla Berezovskaya & Geertrui Deneck, 2023. "SOX11 regulates SWI/SNF complex components as member of the adrenergic neuroblastoma core regulatory circuitry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Jaeyoon Lee & Meiling Wu & James T. Inman & Gundeep Singh & Seong ha Park & Joyce H. Lee & Robert M. Fulbright & Yifeng Hong & Joshua Jeong & James M. Berger & Michelle D. Wang, 2023. "Chromatinization modulates topoisomerase II processivity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Nithya Ramakrishnan & Sibi Raj B Pillai & Ranjith Padinhateeri, 2022. "High fidelity epigenetic inheritance: Information theoretic model predicts threshold filling of histone modifications post replication," PLOS Computational Biology, Public Library of Science, vol. 18(2), pages 1-22, February.
    11. Jiayi Fan & Andrew T. Moreno & Alexander S. Baier & Joseph J. Loparo & Craig L. Peterson, 2022. "H2A.Z deposition by SWR1C involves multiple ATP-dependent steps," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Dian Spakman & Tinka V. M. Clement & Andreas S. Biebricher & Graeme A. King & Manika I. Singh & Ian D. Hickson & Erwin J. G. Peterman & Gijs J. L. Wuite, 2022. "PICH acts as a force-dependent nucleosome remodeler," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Xiaowei Xu & Shoufu Duan & Xu Hua & Zhiming Li & Richard He & Zhiguo Zhang, 2022. "Stable inheritance of H3.3-containing nucleosomes during mitotic cell divisions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Shuxiang Li & Tiejun Wei & Anna R. Panchenko, 2023. "Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Marios G. Koliopoulos & Reyhan Muhammad & Theodoros I. Roumeliotis & Fabienne Beuron & Jyoti S. Choudhary & Claudio Alfieri, 2022. "Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Yu Zhang & Min Ma & Meng Liu & Aiqing Sun & Xiaoyun Zheng & Kunpeng Liu & Chunmei Yin & Chuanshun Li & Cizhong Jiang & Xiaoyu Tu & Yuda Fang, 2023. "Histone H2A monoubiquitination marks are targeted to specific sites by cohesin subunits in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Marko Dunjić & Felix Jonas & Gilad Yaakov & Roye More & Yoav Mayshar & Yoach Rais & Ayelet-Hashahar Orenbuch & Saifeng Cheng & Naama Barkai & Yonatan Stelzer, 2023. "Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Luca Pagliaroli & Patrizia Porazzi & Alyxandra T. Curtis & Chiara Scopa & Harald M. M. Mikkers & Christian Freund & Lucia Daxinger & Sandra Deliard & Sarah A. Welsh & Sarah Offley & Connor A. Ott & Br, 2021. "Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    20. Rina Hirano & Haruhiko Ehara & Tomoya Kujirai & Tamami Uejima & Yoshimasa Takizawa & Shun-ichi Sekine & Hitoshi Kurumizaka, 2022. "Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33057-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.