Machine learning-driven molecular dynamics unveils a bulk phase transformation driving ammonia synthesis on barium hydride
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-57688-8
Download full text from publisher
References listed on IDEAS
- Christopher M. Goodwin & Patrick Lömker & David Degerman & Bernadette Davies & Mikhail Shipilin & Fernando Garcia-Martinez & Sergey Koroidov & Jette Katja Mathiesen & Raffael Rameshan & Gabriel L. S. , 2024. "Operando probing of the surface chemistry during the Haber–Bosch process," Nature, Nature, vol. 625(7994), pages 282-286, January.
- Masaaki Kitano & Shinji Kanbara & Yasunori Inoue & Navaratnarajah Kuganathan & Peter V. Sushko & Toshiharu Yokoyama & Michikazu Hara & Hideo Hosono, 2015. "Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
- Wenbo Gao & Jianping Guo & Peikun Wang & Qianru Wang & Fei Chang & Qijun Pei & Weijin Zhang & Lin Liu & Ping Chen, 2018. "Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers," Nature Energy, Nature, vol. 3(12), pages 1067-1075, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.
- Navaratnarajah Kuganathan & Ruslan V. Vovk & Alexander Chroneos, 2020. "Mayenite Electrides and Their Doped Forms for Oxygen Reduction Reaction in Solid Oxide Fuel Cells," Energies, MDPI, vol. 13(18), pages 1-14, September.
- Wang, Xiaoyu & Su, Mingze & Zhao, Haibo, 2021. "Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier," Energy, Elsevier, vol. 230(C).
- Huize Wang & Ranga Rohit Seemakurthi & Gao-Feng Chen & Volker Strauss & Oleksandr Savateev & Guangtong Hai & Liangxin Ding & Núria López & Haihui Wang & Markus Antonietti, 2023. "Laser-induced nitrogen fixation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Yuqi Yang & Anders Hellman & Henrik Grönbeck, 2025. "Inherent strain and kinetic coupling determine the kinetics of ammonia synthesis over Ru nanoparticles," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
- S Paramanantham, SalaiSargunan & Brigljević, Boris & Ni, Aleksey & Nagulapati, Vijay Mohan & Han, Gao-Feng & Baek, Jong-Beom & Mikulčić, Hrvoje & Lim, Hankwon, 2023. "Numerical simulation of ball milling reactor for novel ammonia synthesis under ambient conditions," Energy, Elsevier, vol. 263(PC).
- Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Xiong, Chuhao & Wu, Ye & Feng, Mingqian & Fang, Jing & Liu, Dong & Shen, Laihong & Argyle, Morris D. & A. M. Gasem, Khaled & Fan, Maohong, 2022. "High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation," Applied Energy, Elsevier, vol. 323(C).
- Laihao Luo & Xinyan Liu & Xinyu Zhao & Xinyan Zhang & Hong-Jie Peng & Ke Ye & Kun Jiang & Qiu Jiang & Jie Zeng & Tingting Zheng & Chuan Xia, 2024. "Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Zichuang Li & Yangfan Lu & Jiang Li & Miao Xu & Yanpeng Qi & Sang-Won Park & Masaaki Kitano & Hideo Hosono & Jie-Sheng Chen & Tian-Nan Ye, 2023. "Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Daniel Cruz & Sonia Żółtowska & Oleksandr Savateev & Markus Antonietti & Paolo Giusto, 2025. "Carbon nitride caught in the act of artificial photosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
- Hossein Ali Yousefi Rizi & Donghoon Shin, 2022. "Green Hydrogen Production Technologies from Ammonia Cracking," Energies, MDPI, vol. 15(21), pages 1-49, November.
- Huihuang Fang & Simson Wu & Tugce Ayvali & Jianwei Zheng & Joshua Fellowes & Ping-Luen Ho & Kwan Chee Leung & Alexander Large & Georg Held & Ryuichi Kato & Kazu Suenaga & Yves Ira A. Reyes & Ho Viet T, 2023. "Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57688-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.