IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55990-z.html
   My bibliography  Save this article

Room-temperature phosphorescent transparent wood

Author

Listed:
  • Xixi Piao

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Tengyue Wang

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Xuefeng Chen

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Guangming Wang

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Xiangxiang Zhai

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Kaka Zhang

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

Abstract

Transparent wood with high transmittance and versatility has attracted great attention as an energy-saving building material. Many studies have focused on luminescent transparent wood, while the research on organic afterglow transparent wood is an interesting combination. Here, we use luminescent difluoroboron β-diketonate (BF2bdk) compounds, methyl methacrylate (MMA), delignified wood, and initiators to prepare room-temperature phosphorescent transparent wood by thermal initiation polymerization. The resultant PMMA has been found to interact with BF2bdk via dipole-dipole interactions and consequently enhance the intersystem crossing of BF2bdk excited states. The transparent wood matrix can provide a rigid environment for BF2bdk triplets and serve as oxygen barrier to suppress non-radiative decay and oxygen quenching. The prepared afterglow material has the characteristics of diverse composition, long afterglow emission lifetimes, and high photoluminescence quantum yield. This afterglow transparent wood also demonstrates potential application value in areas such as high mechanical strength, good hydrophobicity, and high cost-effectiveness.

Suggested Citation

  • Xixi Piao & Tengyue Wang & Xuefeng Chen & Guangming Wang & Xiangxiang Zhai & Kaka Zhang, 2025. "Room-temperature phosphorescent transparent wood," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55990-z
    DOI: 10.1038/s41467-025-55990-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55990-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55990-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingxiang Zhai & Shujun Li & Jian Li & Shouxin Liu & Tony D. James & Jonathan L. Sessler & Zhijun Chen, 2023. "Room temperature phosphorescence from natural wood activated by external chloride anion treatment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ruiyu Mi & Chaoji Chen & Tobias Keplinger & Yong Pei & Shuaiming He & Dapeng Liu & Jianguo Li & Jiaqi Dai & Emily Hitz & Bao Yang & Ingo Burgert & Liangbing Hu, 2020. "Scalable aesthetic transparent wood for energy efficient buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Ryota Kabe & Chihaya Adachi, 2017. "Organic long persistent luminescence," Nature, Nature, vol. 550(7676), pages 384-387, October.
    4. Keliang Wan & Bing Tian & Yingxiang Zhai & Yuxuan Liu & He Wang & Shouxin Liu & Shujun Li & Wenpeng Ye & Zhongfu An & Changzhi Li & Jian Li & Tony D. James & Zhijun Chen, 2022. "Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Kenry & Chengjian Chen & Bin Liu, 2019. "Enhancing the performance of pure organic room-temperature phosphorescent luminophores," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixia Liu & Hongda Guo & Shouxin Liu & Jian Li & Shujun Li & Tony D. James & Zhijun Chen, 2024. "Room temperature phosphorescent wood hydrogel," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Min Wang & Wei-Ming Yin & Yingxiang Zhai & Jingyi Zhou & Shouxin Liu & Jian Li & Shujun Li & Tony D. James & Zhijun Chen, 2025. "Solvent-free processing of lignin into robust room temperature phosphorescent materials," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    4. Lulin Xu & Yuhang Mo & Ning Su & Changshen Shi & Ning Sun & Yuewei Zhang & Lian Duan & Zheng-Hong Lu & Junqiao Ding, 2023. "D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free sensitization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Tianhong Chen & Dongpeng Yan, 2024. "Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Biao Chen & Wenhuan Huang & Guoqing Zhang, 2023. "Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Weiwei Xie & Wenbin Huang & Jietai Li & Zikai He & Guangxi Huang & Bing Shi Li & Ben Zhong Tang, 2023. "Anti-Kasha triplet energy transfer and excitation wavelength dependent persistent luminescence from host-guest doping systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Yufeng Xue & Zongliang Xie & Zheng Yin & Yincai Xu & Bin Liu, 2025. "Full-color processible afterglow organic small molecular glass," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Juan Wei & Mingye Zhu & Tingchen Du & Jangang Li & Peiling Dai & Chenyuan Liu & Jiayu Duan & Shujuan Liu & Xingcheng Zhou & Sudi Zhang & Luo Guo & Hao Wang & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Full-color persistent room temperature phosphorescent elastomers with robust optical properties," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Zongliang Xie & Yufeng Xue & Xianhe Zhang & Junru Chen & Zesen Lin & Bin Liu, 2024. "Isostructural doping for organic persistent mechanoluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Lutong Zhang & Jisen Li & Yifan Zhang & Wenbo Dai & Yufan Zhang & Xue Gao & Miaochang Liu & Huayue Wu & Xiaobo Huang & Yunxiang Lei & Dan Ding, 2025. "White light-excited organic room-temperature phosphorescence for improved in vivo bioimaging," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Xin Li & Wenlang Li & Ziqi Deng & Jingtian Wang & Shan He & Xinwen Ou & David Lee Phillips & Guanjun Xiao & Bo Zou & Ryan T. K. Kwok & Jianwei Sun & Jacky W. Y. Lam & Zhihong Guo & Ben Zhong Tang, 2025. "Building bridges through dynamic coupling for organic phosphorescence," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    16. Hu, Xin & Zhang, Yingbo & Zhang, Jing & Yang, Hongyu & Wang, Faming & Bin Fei, & Noor, Nuruzzaman, 2022. "Sonochemically-coated transparent wood with ZnO: Passive radiative cooling materials for energy saving applications," Renewable Energy, Elsevier, vol. 193(C), pages 398-406.
    17. K. M. Karthik & R. Anuradha, 2024. "Numerical analysis on rehabilitation material selection on RC beams with ultra-high-performance concrete: an application of sustainable construction," Annals of Operations Research, Springer, vol. 335(1), pages 517-534, April.
    18. Dian-Xue Ma & Zhong-Qiu Li & Kun Tang & Zhong-Liang Gong & Jiang-Yang Shao & Yu-Wu Zhong, 2024. "Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Danman Guo & Wen Wang & Kaimin Zhang & Jinzheng Chen & Yuyuan Wang & Tianyi Wang & Wangmeng Hou & Zhen Zhang & Huahua Huang & Zhenguo Chi & Zhiyong Yang, 2024. "Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55990-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.