IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40193-1.html
   My bibliography  Save this article

Full-color persistent room temperature phosphorescent elastomers with robust optical properties

Author

Listed:
  • Juan Wei

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Mingye Zhu

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Tingchen Du

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Jangang Li

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Peiling Dai

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Chenyuan Liu

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Jiayu Duan

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Shujuan Liu

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Xingcheng Zhou

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Sudi Zhang

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Luo Guo

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Hao Wang

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Yun Ma

    (Nanjing University of Posts and Telecommunications (NUPT))

  • Wei Huang

    (Nanjing University of Posts and Telecommunications (NUPT)
    Northwestern Polytechnical University)

  • Qiang Zhao

    (Nanjing University of Posts and Telecommunications (NUPT)
    Nanjing University of Posts and Telecommunications (NUPT))

Abstract

Persistent room temperature phosphorescent materials with unique mechanical properties and robust optical properties have great potential in flexible electronics and photonics. However, developing such materials remains a formidable challenge. Here, we present highly stretchable, lightweight, and multicolored persistent luminescence elastomers, produced by incorporating ionic room temperature phosphorescent polymers and polyvinyl alcohol into a polydimethylsiloxane matrix. These prepared elastomers exhibit high optical transparency in daylight and emit bright persistent luminescence after the removal of 365 nm excitation. The homogeneous distribution of polymers within the matrix has been confirmed by confocal fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. Mechanical property investigations revealed that the prepared persistent luminescence elastomers possess satisfactory stretchability. Impressively, these elastomers maintain robust optical properties even under extensive and repeated mechanical deformations, a characteristic previously unprecedented. These fantastic features make these persistent luminescence elastomers ideal candidates for potential applications in wearable devices, flexible displays, and anti-counterfeiting.

Suggested Citation

  • Juan Wei & Mingye Zhu & Tingchen Du & Jangang Li & Peiling Dai & Chenyuan Liu & Jiayu Duan & Shujuan Liu & Xingcheng Zhou & Sudi Zhang & Luo Guo & Hao Wang & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Full-color persistent room temperature phosphorescent elastomers with robust optical properties," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40193-1
    DOI: 10.1038/s41467-023-40193-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40193-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40193-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ryota Kabe & Chihaya Adachi, 2017. "Organic long persistent luminescence," Nature, Nature, vol. 550(7676), pages 384-387, October.
    3. Dan Li & Yujie Yang & Jie Yang & Manman Fang & Ben Zhong Tang & Zhen Li, 2022. "Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Rui Tian & Shuo Gao & Kaitao Li & Chao Lu, 2023. "Design of mechanical-robust phosphorescence materials through covalent click reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Lulin Xu & Yuhang Mo & Ning Su & Changshen Shi & Ning Sun & Yuewei Zhang & Lian Duan & Zheng-Hong Lu & Junqiao Ding, 2023. "D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free sensitization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Weiwei Xie & Wenbin Huang & Jietai Li & Zikai He & Guangxi Huang & Bing Shi Li & Ben Zhong Tang, 2023. "Anti-Kasha triplet energy transfer and excitation wavelength dependent persistent luminescence from host-guest doping systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Bo Chu & Xiong Liu & Zuping Xiong & Ziteng Zhang & Bin Liu & Chengjian Zhang & Jing Zhi Sun & Qing Yang & Haoke Zhang & Ben Zhong Tang & Xing-Hong Zhang, 2024. "Enabling nonconjugated polyesters emit full-spectrum fluorescence from blue to near-infrared," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Biao Chen & Wenhuan Huang & Guoqing Zhang, 2023. "Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Qinglong Jia & Xilong Yan & Bowei Wang & Jiayi Li & Wensheng Xu & Zhuoyao Shen & Changchang Bo & Yang Li & Ligong Chen, 2023. "Construction of room temperature phosphorescent materials with ultralong lifetime by in-situ derivation strategy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Zizhao Huang & Zhenyi He & Bingbing Ding & He Tian & Xiang Ma, 2022. "Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40193-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.