IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45622-3.html
   My bibliography  Save this article

Photocured room temperature phosphorescent materials from lignosulfonate

Author

Listed:
  • Hongda Guo

    (Northeast Forestry University, Ministry of Education)

  • Mengnan Cao

    (Northeast Forestry University, Ministry of Education)

  • Ruixia Liu

    (Northeast Forestry University, Ministry of Education)

  • Bing Tian

    (Northeast Forestry University, Ministry of Education)

  • Shouxin Liu

    (Northeast Forestry University, Ministry of Education)

  • Jian Li

    (Northeast Forestry University, Ministry of Education)

  • Shujun Li

    (Northeast Forestry University, Ministry of Education)

  • Bernd Strehmel

    (Niederrhein University of Applied Sciences)

  • Tony D. James

    (University of Bath
    Henan Normal University)

  • Zhijun Chen

    (Northeast Forestry University, Ministry of Education)

Abstract

Photocured room temperature phosphorescent (RTP) materials hold great potential for practical applications but are scarcely reported. Here, we develop photocured RTP materials (P-Lig) using a combination of lignosulfonate, acrylamide, and ionic liquid (1-ethyl-3-methylimidazolium bromide). With this design, lignosulfonate simultaneously serves as RTP chromophore and photoinitiator. Specifically, lignosulfonate in the ionic liquid generates radicals to polymerize the acrylamide upon UV irradiation. The resulting lignosulfonate is automatically confined in an as-formed crosslinked matrix to provide RTP. As such RTP with an emission lifetime of ~110 ms is observed from the confined lignosulfonate in P-Lig. Additionally, energy transfer occur between P-Lig and Rhodamine B (RhB), triggering red afterglow emission when P-Lig is in situ loaded with RhB (P-Lig/RhB). As a demonstration of potential applications, the P-Lig and P-Lig/RhB are used as photocured RTP coatings and RTP inks for fabricating 3D materials and for information encryption.

Suggested Citation

  • Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45622-3
    DOI: 10.1038/s41467-024-45622-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45622-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45622-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingxiang Zhai & Shujun Li & Jian Li & Shouxin Liu & Tony D. James & Jonathan L. Sessler & Zhijun Chen, 2023. "Room temperature phosphorescence from natural wood activated by external chloride anion treatment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiao Wang & Wenjing Sun & Huifang Shi & Huili Ma & Guowei Niu & Yuxin Li & Jiahuan Zhi & Xiaokang Yao & Zhicheng Song & Lei Chen & Shi Li & Guohui Yang & Zixing Zhou & Yixiao He & Shuli Qu & Min Wu & , 2022. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Donglin Gan & Wensi Xing & Lili Jiang & Ju Fang & Cancan Zhao & Fuzeng Ren & Liming Fang & Kefeng Wang & Xiong Lu, 2019. "Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Keliang Wan & Bing Tian & Yingxiang Zhai & Yuxuan Liu & He Wang & Shouxin Liu & Shujun Li & Wenpeng Ye & Zhongfu An & Changzhi Li & Jian Li & Tony D. James & Zhijun Chen, 2022. "Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Yongqin Zhao & Junzhe Zhu & Wangyan He & Yu Liu & Xinxin Sang & Ren Liu, 2023. "3D printing of unsupported multi-scale and large-span ceramic via near-infrared assisted direct ink writing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Jianguo Wang & Xinggui Gu & Huili Ma & Qian Peng & Xiaobo Huang & Xiaoyan Zheng & Simon H. P. Sung & Guogang Shan & Jacky W. Y. Lam & Zhigang Shuai & Ben Zhong Tang, 2018. "A facile strategy for realizing room temperature phosphorescence and single molecule white light emission," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Fuming Xiao & Heqi Gao & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Xiaoyan Zheng & Zhengxu Cai & Xiaobo Huang & Huayue Wu & Dan Ding, 2022. "Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Qijun Li & Ming Zhou & Mingyang Yang & Qingfeng Yang & Zhixun Zhang & Jing Shi, 2018. "Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiaokang Yao & Huili Ma & Xiao Wang & He Wang & Qian Wang & Xin Zou & Zhicheng Song & Wenyong Jia & Yuxin Li & Yufeng Mao & Manjeet Singh & Wenpeng Ye & Jian Liang & Yanyun Zhang & Zhuang Liu & Yixiao, 2022. "Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Yuanchi Zhang & Cairong Li & Along Guo & Yipei Yang & Yangyi Nie & Jiaxin Liao & Ben Liu & Yanmei Zhou & Long Li & Zhitong Chen & Wei Zhang & Ling Qin & Yuxiao Lai, 2024. "Black phosphorus boosts wet-tissue adhesion of composite patches by enhancing water absorption and mechanical properties," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Pengchao Zhao & Xianfeng Xia & Xiayi Xu & Kevin Kai Chung Leung & Aliza Rai & Yingrui Deng & Boguang Yang & Huasheng Lai & Xin Peng & Peng Shi & Honglu Zhang & Philip Wai Yan Chiu & Liming Bian, 2021. "Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. He Wang & Huili Ma & Nan Gan & Kai Qin & Zhicheng Song & Anqi Lv & Kai Wang & Wenpeng Ye & Xiaokang Yao & Chifeng Zhou & Xiao Wang & Zixing Zhou & Shilin Yang & Lirong Yang & Cuimei Bo & Huifang Shi &, 2024. "Abnormal thermally-stimulated dynamic organic phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Jingxuan You & Xin Zhang & Qinying Nan & Kunfeng Jin & Jinming Zhang & Yirong Wang & Chunchun Yin & Zhiyong Yang & Jun Zhang, 2023. "Aggregation-regulated room-temperature phosphorescence materials with multi-mode emission, adjustable excitation-dependence and visible-light excitation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45622-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.