IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46869-6.html
   My bibliography  Save this article

Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications

Author

Listed:
  • Wenqing Xu

    (The University of Hong Kong, Pokfulam Road
    Sichuan University
    West China Hospital of Stomatology, Sichuan University)

  • Guanheng Huang

    (The University of Hong Kong, Pokfulam Road)

  • Zhan Yang

    (Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong)

  • Ziqi Deng

    (The University of Hong Kong, Pokfulam Road)

  • Chen Zhou

    (Shantou University)

  • Jian-An Li

    (The Hong Kong University of Science and Technology (Guangzhou), Nansha)

  • Ming-De Li

    (Shantou University)

  • Tao Hu

    (Sichuan University
    West China Hospital of Stomatology, Sichuan University)

  • Ben Zhong Tang

    (Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong)

  • David Lee Phillips

    (The University of Hong Kong, Pokfulam Road)

Abstract

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.

Suggested Citation

  • Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46869-6
    DOI: 10.1038/s41467-024-46869-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46869-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46869-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenlang Li & Qiuyi Huang & Zhu Mao & Xiaoyi He & Dongyu Ma & Juan Zhao & Jacky W. Y. Lam & Yi Zhang & Ben Zhong Tang & Zhenguo Chi, 2022. "A dish-like molecular architecture for dynamic ultralong room-temperature phosphorescence through reversible guest accommodation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Weimin Wang & Michael Green & Jae Eun Choi & Miguel Gijón & Paul D. Kennedy & Jeffrey K. Johnson & Peng Liao & Xueting Lang & Ilona Kryczek & Amanda Sell & Houjun Xia & Jiajia Zhou & Gaopeng Li & Jing, 2019. "CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy," Nature, Nature, vol. 569(7755), pages 270-274, May.
    3. Ming-Peng Zhuo & Jun-Jie Wu & Xue-Dong Wang & Yi-Chen Tao & Yi Yuan & Liang-Sheng Liao, 2019. "Hierarchical self-assembly of organic heterostructure nanowires," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Nathan HyunJoong Joh & Andrew Min & Salem Faham & Julian P. Whitelegge & Duan Yang & Virgil L. Woods & James U. Bowie, 2008. "Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins," Nature, Nature, vol. 453(7199), pages 1266-1270, June.
    6. Somnath Dey & Susobhan Das & Surojit Bhunia & Rituparno Chowdhury & Amit Mondal & Biswajit Bhattacharya & Ramesh Devarapalli & Nobuhiro Yasuda & Taro Moriwaki & Kapil Mandal & Goutam Dev Mukherjee & C, 2021. "Retraction Note: Mechanically interlocked architecture aids an ultra-stiff and ultra-hard elastically bendable cocrystal," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    7. Erik Winfree & Furong Liu & Lisa A. Wenzler & Nadrian C. Seeman, 1998. "Design and self-assembly of two-dimensional DNA crystals," Nature, Nature, vol. 394(6693), pages 539-544, August.
    8. K. P. Goetz & A. Fonari & D. Vermeulen & P. Hu & H. Jiang & P. J. Diemer & J. W. Ward & M. E. Payne & C. S. Day & C. Kloc & V. Coropceanu & L. E. McNeil & O. D. Jurchescu, 2014. "Freezing-in orientational disorder induces crossover from thermally-activated to temperature-independent transport in organic semiconductors," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    9. Fei Nie & Ke-Zhi Wang & Dongpeng Yan, 2023. "Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal–organic complexes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Chunguang Zhai & Xiu Yin & Shifeng Niu & Mingguang Yao & Shuhe Hu & Jiajun Dong & Yuchen Shang & Zhigang Wang & Quanjun Li & Bertil Sundqvist & Bingbing Liu, 2021. "Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Qijun Li & Ming Zhou & Mingyang Yang & Qingfeng Yang & Zhixun Zhang & Jing Shi, 2018. "Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    12. Shen Xu & Wu Wang & Hui Li & Jingyu Zhang & Runfeng Chen & Shuang Wang & Chao Zheng & Guichuan Xing & Chunyuan Song & Wei Huang, 2020. "Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    13. Helena Alves & Rui M. Pinto & Ermelinda S. Maçôas, 2013. "Photoconductive response in organic charge transfer interfaces with high quantum efficiency," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Debasish Barman & Mari Annadhasan & Anil Parsram Bidkar & Pachaiyappan Rajamalli & Debika Barman & Siddhartha Sankar Ghosh & Rajadurai Chandrasekar & Parameswar Krishnan Iyer, 2023. "Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Kumar S. Ray & Mandrita Mondal, 2016. "Logical Inference by DNA Strand Algebra," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 29-44, March.
    5. Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Li-Kai Chu & Xu Cao & Lin Wan & Qiang Diao & Yu Zhu & Yu Kan & Li-Li Ye & Yi-Ming Mao & Xing-Qiang Dong & Qian-Wei Xiong & Ming-Cui Fu & Ting Zhang & Hui-Ting Zhou & Shi-Zhong Cai & Zhou-Rui Ma & Ssu-, 2023. "Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Ying Xue & Fujia Lu & Zhenzhen Chang & Jing Li & Yuan Gao & Jie Zhou & Ying Luo & Yongfeng Lai & Siyuan Cao & Xiaoxiao Li & Yuhan Zhou & Yan Li & Zheng Tan & Xiang Cheng & Xiong Li & Jing Chen & Weimi, 2023. "Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Xiang Tian & Xiyu Liu & Hongyan Zhang & Minghe Sun & Yuzhen Zhao, 2020. "A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    13. Tyler G Moore & Max H Garzon & Russell J Deaton, 2015. "Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    14. Wang, Liqiu & Zhang, Yuxiang & Cheng, Lin, 2009. "Magic microfluidic T-junctions: Valving and bubbling," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1530-1537.
    15. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Xiaokang Yao & Huili Ma & Xiao Wang & He Wang & Qian Wang & Xin Zou & Zhicheng Song & Wenyong Jia & Yuxin Li & Yufeng Mao & Manjeet Singh & Wenpeng Ye & Jian Liang & Yanyun Zhang & Zhuang Liu & Yixiao, 2022. "Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Ming-Peng Zhuo & Xiao Wei & Yuan-Yuan Li & Ying-Li Shi & Guang-Peng He & Huixue Su & Ke-Qin Zhang & Jin-Ping Guan & Xue-Dong Wang & Yuchen Wu & Liang-Sheng Liao, 2024. "Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46869-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.