IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45823-w.html
   My bibliography  Save this article

Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence

Author

Listed:
  • Di-Yang Sun

    (Second Military Medical University/Naval Medical University
    Nanjing University)

  • Wen-Bin Wu

    (Second Military Medical University/Naval Medical University)

  • Jian-Jin Wu

    (Naval Medical University/Second Military Medical University)

  • Yu Shi

    (Tongji University School of Medicine)

  • Jia-Jun Xu

    (Naval Medical University/Second Military Medical University)

  • Shen-Xi Ouyang

    (Tongji University School of Medicine)

  • Chen Chi

    (Tongji University School of Medicine
    Tongji University School of Medicine)

  • Yi Shi

    (Fudan University
    Zhongshan Hospital Fudan University)

  • Qing-Xin Ji

    (Tongji University School of Medicine)

  • Jin-Hao Miao

    (Changzheng Hospital Affiliated Hospital of Naval Medical University/Second Military Medical University)

  • Jiang-Tao Fu

    (Second Military Medical University/Naval Medical University)

  • Jie Tong

    (Tongji University School of Medicine)

  • Ping-Ping Zhang

    (Second Military Medical University/Naval Medical University)

  • Jia-Bao Zhang

    (Second Military Medical University/Naval Medical University
    Naval Medical University/Second Military Medical University)

  • Zhi-Yong Li

    (Second Military Medical University/Naval Medical University
    Naval Medical University/Second Military Medical University)

  • Le-Feng Qu

    (Naval Medical University/Second Military Medical University)

  • Fu-Ming Shen

    (Tongji University School of Medicine)

  • Dong-Jie Li

    (Tongji University School of Medicine)

  • Pei Wang

    (Second Military Medical University/Naval Medical University
    Naval Medical University/Second Military Medical University)

Abstract

Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.

Suggested Citation

  • Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45823-w
    DOI: 10.1038/s41467-024-45823-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45823-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45823-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingwen Da & Ziyan Li & Xiaofan Huang & Zuhan He & Yubing Yu & Tongtong Tian & Chengqi Xu & Yufeng Yao & Qing K. Wang, 2023. "AGGF1 therapy inhibits thoracic aortic aneurysms by enhancing integrin α7-mediated inhibition of TGF-β1 maturation and ERK1/2 signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Le Jiang & Ning Kon & Tongyuan Li & Shang-Jui Wang & Tao Su & Hanina Hibshoosh & Richard Baer & Wei Gu, 2015. "Ferroptosis as a p53-mediated activity during tumour suppression," Nature, Nature, vol. 520(7545), pages 57-62, April.
    3. Weimin Wang & Michael Green & Jae Eun Choi & Miguel Gijón & Paul D. Kennedy & Jeffrey K. Johnson & Peng Liao & Xueting Lang & Ilona Kryczek & Amanda Sell & Houjun Xia & Jiajia Zhou & Gaopeng Li & Jing, 2019. "CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy," Nature, Nature, vol. 569(7755), pages 270-274, May.
    4. Stella Victorelli & Hanna Salmonowicz & James Chapman & Helene Martini & Maria Grazia Vizioli & Joel S. Riley & Catherine Cloix & Ella Hall-Younger & Jair Machado Espindola-Netto & Diana Jurk & Anthon, 2023. "Apoptotic stress causes mtDNA release during senescence and drives the SASP," Nature, Nature, vol. 622(7983), pages 627-636, October.
    5. Xiaojie Wang & Raul Ramos & Anne Q. Phan & Kosuke Yamaga & Jessica L. Flesher & Shan Jiang & Ji Won Oh & Suoqin Jin & Sohail Jahid & Chen-Hsiang Kuan & Truman Kt Nguyen & Heidi Y. Liang & Nitish Udupi, 2023. "Signalling by senescent melanocytes hyperactivates hair growth," Nature, Nature, vol. 618(7966), pages 808-817, June.
    6. Nunzia Caporarello & Jisu Lee & Tho X. Pham & Dakota L. Jones & Jiazhen Guan & Patrick A. Link & Jeffrey A. Meridew & Grace Marden & Takashi Yamashita & Collin A. Osborne & Aditya V. Bhagwate & Steven, 2022. "Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Joseph D. Mancias & Xiaoxu Wang & Steven P. Gygi & J. Wade Harper & Alec C. Kimmelman, 2014. "Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy," Nature, Nature, vol. 509(7498), pages 105-109, May.
    8. Nunzia Caporarello & Jisu Lee & Tho X. Pham & Dakota L. Jones & Jiazhen Guan & Patrick A. Link & Jeffrey A. Meridew & Grace Marden & Takashi Yamashita & Collin A. Osborne & Aditya V. Bhagwate & Steven, 2022. "Author Correction: Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    9. Dominik Saul & Robyn Laura Kosinsky & Elizabeth J. Atkinson & Madison L. Doolittle & Xu Zhang & Nathan K. LeBrasseur & Robert J. Pignolo & Paul D. Robbins & Laura J. Niedernhofer & Yuji Ikeno & Diana , 2022. "A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Elena Katsyuba & Adrienne Mottis & Marika Zietak & Francesca Franco & Vera Velpen & Karim Gariani & Dongryeol Ryu & Lucia Cialabrini & Olli Matilainen & Paride Liscio & Nicola Giacchè & Nadine Stokar-, 2018. "De novo NAD+ synthesis enhances mitochondrial function and improves health," Nature, Nature, vol. 563(7731), pages 354-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Hope Dang & Raul Castro-Portuguez & Luis Espejo & Grant Backer & Samuel Freitas & Erica Spence & Jeremy Meyers & Karissa Shuck & Emily A. Gardea & Leah M. Chang & Jonah Balsa & Niall Thorns & Caroline, 2023. "On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Nan Wu & Yi-Cheng Ma & Xin-Qian Gong & Pei-Ji Zhao & Yong-Jian Jia & Qiu Zhao & Jia-Hong Duan & Cheng-Gang Zou, 2023. "The metabolite alpha-ketobutyrate extends lifespan by promoting peroxisomal function in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Li-Kai Chu & Xu Cao & Lin Wan & Qiang Diao & Yu Zhu & Yu Kan & Li-Li Ye & Yi-Ming Mao & Xing-Qiang Dong & Qian-Wei Xiong & Ming-Cui Fu & Ting Zhang & Hui-Ting Zhou & Shi-Zhong Cai & Zhou-Rui Ma & Ssu-, 2023. "Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Yandi Wu & Tongsheng Huang & Xinghui Li & Conghui Shen & Honglin Ren & Haiping Wang & Teng Wu & Xinlu Fu & Shijie Deng & Ziqi Feng & Shijie Xiong & Hui Li & Saifei Gao & Zhenyu Yang & Fei Gao & Lele D, 2023. "Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Xiaoting Zhou & You-Kyung Lee & Xianting Li & Henry Kim & Carlos Sanchez-Priego & Xian Han & Haiyan Tan & Suiping Zhou & Yingxue Fu & Kerry Purtell & Qian Wang & Gay R. Holstein & Beisha Tang & Junmin, 2024. "Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Ying Xue & Fujia Lu & Zhenzhen Chang & Jing Li & Yuan Gao & Jie Zhou & Ying Luo & Yongfeng Lai & Siyuan Cao & Xiaoxiao Li & Yuhan Zhou & Yan Li & Zheng Tan & Xiang Cheng & Xiong Li & Jing Chen & Weimi, 2023. "Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Zhe Wang & Xin Yang & Delin Chen & Yanqing Liu & Zhiming Li & Shoufu Duan & Zhiguo Zhang & Xuejun Jiang & Brent R. Stockwell & Wei Gu, 2024. "GAS41 modulates ferroptosis by anchoring NRF2 on chromatin," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Ming-liang Ji & Hua Jiang & Zhuang Li & Rui Geng & Jun Zheng Hu & Yu Cheng Lin & Jun Lu, 2022. "Sirt6 attenuates chondrocyte senescence and osteoarthritis progression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Nong Lu & Zhihong Deng & Jing Gao & Chao Liang & Haiping Xia & Pingyu Zhang, 2022. "An osmium-peroxo complex for photoactive therapy of hypoxic tumors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Han-Yi Chen & Wan-Chen Hsieh & Yu-Chieh Liu & Huei-Ying Li & Po-Yo Liu & Yu-Ting Hsu & Shao-Chun Hsu & An-Chi Luo & Wei-Chen Kuo & Yi-Jhen Huang & Gan-Guang Liou & Meng-Yun Lin & Chun-Jung Ko & Hsing-, 2024. "Mitochondrial injury induced by a Salmonella genotoxin triggers the proinflammatory senescence-associated secretory phenotype," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Xinyi Shan & Jiahuan Li & Jiahao Liu & Baoli Feng & Ting Zhang & Qian Liu & Huixin Ma & Honghong Wu & Hao Wu, 2023. "Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Quetzalcoatl Escalante-Covarrubias & Lucía Mendoza-Viveros & Mirna González-Suárez & Román Sitten-Olea & Laura A. Velázquez-Villegas & Fernando Becerril-Pérez & Ignacio Pacheco-Bernal & Erick Carreño-, 2023. "Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    18. Markus M. Rinschen & Oleg Palygin & Ashraf El-Meanawy & Xavier Domingo-Almenara & Amelia Palermo & Lashodya V. Dissanayake & Daria Golosova & Michael A. Schafroth & Carlos Guijas & Fatih Demir & Johan, 2022. "Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Gang Liu & Jian-ying Ma & Gang Hu & Huan Jin, 2021. "Identification and validation of a novel ferroptosis-related gene model for predicting the prognosis of gastric cancer patients," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-16, July.
    20. Yuelong Yan & Hongqi Teng & Qinglei Hang & Lavanya Kondiparthi & Guang Lei & Amber Horbath & Xiaoguang Liu & Chao Mao & Shiqi Wu & Li Zhuang & M. James You & Masha V. Poyurovsky & Li Ma & Kellen Olsze, 2023. "SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45823-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.