IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55862-6.html
   My bibliography  Save this article

Precisely designing asymmetrical selenium-based dual-atom sites for efficient oxygen reduction

Author

Listed:
  • Xiaochen Wang

    (Zhengzhou University)

  • Ning Zhang

    (Zhengzhou University)

  • Huishan Shang

    (Zhengzhou University)

  • Haojie Duan

    (Tsinghua University)

  • Zhiyi Sun

    (Beijing Institute of Technology)

  • Lili Zhang

    (Zhengzhou University)

  • Yuanting Lei

    (Zhengzhou University)

  • Xuan Luo

    (Tsinghua University)

  • Liang Zhang

    (Tsinghua University)

  • Bing Zhang

    (Zhengzhou University)

  • Wenxing Chen

    (Beijing Institute of Technology)

Abstract

Owing to their synergistic interactions, dual-atom catalysts (DACs) with well-defined active sites are attracting increasing attention. However, more experimental research and theoretical investigations are needed to further construct explicit dual-atom sites and understand the synergy that facilitates multistep catalytic reactions. Herein, we precisely design a series of asymmetric selenium-based dual-atom catalysts that comprise heteronuclear SeN2–MN2 (M = Fe, Mn, Co, Ni, Cu, Mo, etc.) active sites for the efficient oxygen reduction reaction (ORR). Spectroscopic characterisation and theoretical calculations revealed that heteronuclear selenium atoms can efficiently polarise the charge distribution of other metal atoms through short-range regulation. In addition, compared with the Se or Fe single-atom sites, the SeFe dual-atom sites facilitate a reduction in the conversion energy barrier from *O to *OH via the coadsorption of *O intermediates. Among these designed selenium-based dual-atom catalysts, selenium-iron dual-atom catalysts achieves superior alkaline ORR performance, with a half-wave potential of 0.926 V vs. a reversible hydrogen electrode. In addition, the SeN2–FeN2-based Zn–air battery has a high specific capacity (764.8 mAh g−1) and a maximum power density (287.2 mW cm−2). This work may provide a good perspective for designing heteronuclear DACs to improve ORR efficiency.

Suggested Citation

  • Xiaochen Wang & Ning Zhang & Huishan Shang & Haojie Duan & Zhiyi Sun & Lili Zhang & Yuanting Lei & Xuan Luo & Liang Zhang & Bing Zhang & Wenxing Chen, 2025. "Precisely designing asymmetrical selenium-based dual-atom sites for efficient oxygen reduction," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55862-6
    DOI: 10.1038/s41467-025-55862-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55862-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55862-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Wan & Qingtao Liu & Jieyuan Liu & Shiyuan Liu & Xiaofang Liu & Lirong Zheng & Jiaxiang Shang & Ronghai Yu & Jianglan Shui, 2022. "Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Huishan Shang & Xiangyi Zhou & Juncai Dong & Ang Li & Xu Zhao & Qinghua Liu & Yue Lin & Jiajing Pei & Zhi Li & Zhuoli Jiang & Danni Zhou & Lirong Zheng & Yu Wang & Jing Zhou & Zhengkun Yang & Rui Cao , 2020. "Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Hong Bin Yang & Sung-Fu Hung & Song Liu & Kaidi Yuan & Shu Miao & Liping Zhang & Xiang Huang & Hsin-Yi Wang & Weizheng Cai & Rong Chen & Jiajian Gao & Xiaofeng Yang & Wei Chen & Yanqiang Huang & Hao M, 2018. "Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction," Nature Energy, Nature, vol. 3(2), pages 140-147, February.
    4. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    6. Gege Yang & Jiawei Zhu & Pengfei Yuan & Yongfeng Hu & Gan Qu & Bang-An Lu & Xiaoyi Xue & Hengbo Yin & Wenzheng Cheng & Junqi Cheng & Wenjing Xu & Jin Li & Jinsong Hu & Shichun Mu & Jia-Nan Zhang, 2021. "Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Shengwen Liu & Chenzhao Li & Michael J. Zachman & Yachao Zeng & Haoran Yu & Boyang Li & Maoyu Wang & Jonathan Braaten & Jiawei Liu & Harry M. Meyer & Marcos Lucero & A. Jeremy Kropf & E. Ercan Alp & Q, 2022. "Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells," Nature Energy, Nature, vol. 7(7), pages 652-663, July.
    8. Ruijie Gao & Jian Wang & Zhen-Feng Huang & Rongrong Zhang & Wei Wang & Lun Pan & Junfeng Zhang & Weikang Zhu & Xiangwen Zhang & Chengxiang Shi & Jongwoo Lim & Ji-Jun Zou, 2021. "Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading," Nature Energy, Nature, vol. 6(6), pages 614-623, June.
    9. Javeed Mahmood & Eun Kwang Lee & Minbok Jung & Dongbin Shin & In-Yup Jeon & Sun-Min Jung & Hyun-Jung Choi & Jeong-Min Seo & Seo-Yoon Bae & So-Dam Sohn & Noejung Park & Joon Hak Oh & Hyung-Joon Shin & , 2015. "Nitrogenated holey two-dimensional structures," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jingsen Bai & Tuo Zhao & Mingjun Xu & Bingbao Mei & Liting Yang & Zhaoping Shi & Siyuan Zhu & Ying Wang & Zheng Jiang & Jin Zhao & Junjie Ge & Meiling Xiao & Changpeng Liu & Wei Xing, 2024. "Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Meihuan Liu & Jing Zhang & Hui Su & Yaling Jiang & Wanlin Zhou & Chenyu Yang & Shuowen Bo & Jun Pan & Qinghua Liu, 2024. "In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Feng Wu & Xiaokang Liu & Shiqi Wang & Longfei Hu & Sebastian Kunze & Zhenggang Xue & Zehao Shen & Yaxiong Yang & Xinqiang Wang & Minghui Fan & Hongge Pan & Xiaoping Gao & Tao Yao & Yuen Wu, 2024. "Identification of K+-determined reaction pathway for facilitated kinetics of CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Bingqing Wang & Meng Wang & Ziting Fan & Chao Ma & Shibo Xi & Lo‐Yueh Chang & Mingsheng Zhang & Ning Ling & Ziyu Mi & Shenghua Chen & Wan Ru Leow & Jia Zhang & Dingsheng Wang & Yanwei Lum, 2024. "Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    15. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    16. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Liuzhuang Xing & Qian Yang & Chen Zhu & Yilian Bai & Yurong Tang & Magnus Rueping & Yunfei Cai, 2023. "Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55862-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.