IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21919-5.html
   My bibliography  Save this article

Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity

Author

Listed:
  • Gege Yang

    (Zhengzhou University)

  • Jiawei Zhu

    (Wuhan University of Technology
    Foshan Xianhu Laboratory)

  • Pengfei Yuan

    (Zhengzhou University)

  • Yongfeng Hu

    (Canadian Light Source)

  • Gan Qu

    (Zhengzhou University)

  • Bang-An Lu

    (Zhengzhou University)

  • Xiaoyi Xue

    (Zhengzhou University)

  • Hengbo Yin

    (Zhengzhou University)

  • Wenzheng Cheng

    (Zhengzhou University)

  • Junqi Cheng

    (Zhengzhou University)

  • Wenjing Xu

    (Zhengzhou University)

  • Jin Li

    (Zhengzhou University)

  • Jinsong Hu

    (Chinese Academy of Sciences)

  • Shichun Mu

    (Wuhan University of Technology
    Foshan Xianhu Laboratory)

  • Jia-Nan Zhang

    (Zhengzhou University)

Abstract

As low-cost electrocatalysts for oxygen reduction reaction applied to fuel cells and metal-air batteries, atomic-dispersed transition metal-nitrogen-carbon materials are emerging, but the genuine mechanism thereof is still arguable. Herein, by rational design and synthesis of dual-metal atomically dispersed Fe,Mn/N-C catalyst as model object, we unravel that the O2 reduction preferentially takes place on FeIII in the FeN4 /C system with intermediate spin state which possesses one eg electron (t2g4eg1) readily penetrating the antibonding π-orbital of oxygen. Both magnetic measurements and theoretical calculation reveal that the adjacent atomically dispersed Mn-N moieties can effectively activate the FeIII sites by both spin-state transition and electronic modulation, rendering the excellent ORR performances of Fe,Mn/N-C in both alkaline and acidic media (halfwave positionals are 0.928 V in 0.1 M KOH, and 0.804 V in 0.1 M HClO4), and good durability, which outperforms and has almost the same activity of commercial Pt/C, respectively. In addition, it presents a superior power density of 160.8 mW cm−2 and long-term durability in reversible zinc–air batteries. The work brings new insight into the oxygen reduction reaction process on the metal-nitrogen-carbon active sites, undoubtedly leading the exploration towards high effective low-cost non-precious catalysts.

Suggested Citation

  • Gege Yang & Jiawei Zhu & Pengfei Yuan & Yongfeng Hu & Gan Qu & Bang-An Lu & Xiaoyi Xue & Hengbo Yin & Wenzheng Cheng & Junqi Cheng & Wenjing Xu & Jin Li & Jinsong Hu & Shichun Mu & Jia-Nan Zhang, 2021. "Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21919-5
    DOI: 10.1038/s41467-021-21919-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21919-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21919-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingsen Bai & Tuo Zhao & Mingjun Xu & Bingbao Mei & Liting Yang & Zhaoping Shi & Siyuan Zhu & Ying Wang & Zheng Jiang & Jin Zhao & Junjie Ge & Meiling Xiao & Changpeng Liu & Wei Xing, 2024. "Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Qichen Wang & Qingguo Feng & Yongpeng Lei & Shuaihao Tang & Liang Xu & Yu Xiong & Guozhao Fang & Yuchao Wang & Peiyao Yang & Jingjing Liu & Wei Liu & Xiang Xiong, 2022. "Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xingkun Wang & Liangliang Xu & Cheng Li & Canhui Zhang & Hanxu Yao & Ren Xu & Peixin Cui & Xusheng Zheng & Meng Gu & Jinwoo Lee & Heqing Jiang & Minghua Huang, 2023. "Developing a class of dual atom materials for multifunctional catalytic reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Kang Liu & Junwei Fu & Yiyang Lin & Tao Luo & Ganghai Ni & Hongmei Li & Zhang Lin & Min Liu, 2022. "Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Guo, Bingran & Guo, Jianing & Yang, Wenlu & Tian, Xiyao & Wang, Xi & Xiang, Zhonghua & Wu, Mingxing, 2022. "Highly dispersed iron/nickel dual-sites in hierarchical porous carbon materials as high-performance bifunctional oxygen electrocatalysts for Zn-air batteries," Renewable Energy, Elsevier, vol. 201(P2), pages 117-124.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21919-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.