IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51858-w.html
   My bibliography  Save this article

A Fe-NC electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells

Author

Listed:
  • Shuhu Yin

    (Xiamen University)

  • Long Chen

    (Xiamen University)

  • Jian Yang

    (Chongqing University)

  • Xiaoyang Cheng

    (Xiamen University)

  • Hongbin Zeng

    (Xiamen University)

  • Yuhao Hong

    (Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory))

  • Huan Huang

    (Chinese Academy of Sciences)

  • Xiaoxiao Kuai

    (Xiamen University
    Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory))

  • Yangu Lin

    (National Synchrotron Radiation Research Center)

  • Rui Huang

    (Xiamen University)

  • Yanxia Jiang

    (Xiamen University)

  • Shigang Sun

    (Xiamen University)

Abstract

Replacement of expensive and rare platinum with metal–nitrogen–carbon catalysts for oxygen reduction reactions in proton exchange membrane fuel cells is hindered by their inferior activity. Herein, we report a highly active iron-nitrogen-carbon catalyst by optimizing the carbon structure and coordination environments of Fe-N4 sites. A critical high-temperature treatment with ammonium chloride and ammonium bromide not only enhances the intrinsic activity and density of Fe-N4 sites, but also introduces numerous defects, trace Br ions and creates mesopores in the carbon framework. Notably, surface Br ions significantly improve the interaction between the ionomer and catalyst particles, promoting ionomer infiltration and optimizing the O2 transport and charge transfer at triple-phase boundary. This catalyst delivers a high peak power density of 1.86 W cm−2 and 54 mA cm−2 at 0.9 ViR-free in a H2-O2 fuel cells at 80 °C. Our findings highlight the critical role of interface microenvironment regulation.

Suggested Citation

  • Shuhu Yin & Long Chen & Jian Yang & Xiaoyang Cheng & Hongbin Zeng & Yuhao Hong & Huan Huang & Xiaoxiao Kuai & Yangu Lin & Rui Huang & Yanxia Jiang & Shigang Sun, 2024. "A Fe-NC electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51858-w
    DOI: 10.1038/s41467-024-51858-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51858-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51858-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shengwen Liu & Chenzhao Li & Michael J. Zachman & Yachao Zeng & Haoran Yu & Boyang Li & Maoyu Wang & Jonathan Braaten & Jiawei Liu & Harry M. Meyer & Marcos Lucero & A. Jeremy Kropf & E. Ercan Alp & Q, 2022. "Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells," Nature Energy, Nature, vol. 7(7), pages 652-663, July.
    2. Eric Proietti & Frédéric Jaouen & Michel Lefèvre & Nicholas Larouche & Juan Tian & Juan Herranz & Jean-Pol Dodelet, 2011. "Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    3. Kara Strickland & Elise Miner & Qingying Jia & Urszula Tylus & Nagappan Ramaswamy & Wentao Liang & Moulay-Tahar Sougrati & Frédéric Jaouen & Sanjeev Mukerjee, 2015. "Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuhu Yin & Hongyuan Yi & Mengli Liu & Jian Yang & Shuangli Yang & Bin-Wei Zhang & Long Chen & Xiaoyang Cheng & Huan Huang & Rui Huang & Yanxia Jiang & Honggang Liao & Shigang Sun, 2024. "An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Bingyu Huang & Qiao Gu & Xiannong Tang & Dirk Lützenkirchen-Hecht & Kai Yuan & Yiwang Chen, 2024. "Experimentally validating sabatier plot by molecular level microenvironment customization for oxygen electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Beltrán, Diana E. & Ding, Shuo & Xu, Hui & Wu, Gang & Litster, Shawn, 2023. "Air Contamination of Platinum-Group Metal-free Fuel Cell Cathodes with Atomically Dispersed Iron Active Sites," Applied Energy, Elsevier, vol. 349(C).
    6. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    7. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Zhe Jiang & Xuerui Liu & Xiao-Zhi Liu & Shuang Huang & Ying Liu & Ze-Cheng Yao & Yun Zhang & Qing-Hua Zhang & Lin Gu & Li-Rong Zheng & Li Li & Jianan Zhang & Youjun Fan & Tang Tang & Zhongbin Zhuang &, 2023. "Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Lin, P.Z. & Sun, J. & He, C.X. & Wu, M.C. & Zhao, T.S., 2024. "Modeling proton exchange membrane fuel cells with platinum-group-metal-free catalysts," Applied Energy, Elsevier, vol. 360(C).
    10. Ratso, Sander & Zitolo, Andrea & Käärik, Maike & Merisalu, Maido & Kikas, Arvo & Kisand, Vambola & Rähn, Mihkel & Paiste, Päärn & Leis, Jaan & Sammelselg, Väino & Holdcroft, Steven & Jaouen, Frédéric , 2021. "Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons," Renewable Energy, Elsevier, vol. 167(C), pages 800-810.
    11. Fang, Yuan & Zhang, Tingting & Wang, Yonghui & Chen, Yuanzhen & Liu, Yan & Wu, Wenling & Zhu, Jianfeng, 2020. "The highly efficient cathode of framework structural Fe2O3/Mn2O3 in passive direct methanol fuel cells," Applied Energy, Elsevier, vol. 259(C).
    12. Jingsen Bai & Tuo Zhao & Mingjun Xu & Bingbao Mei & Liting Yang & Zhaoping Shi & Siyuan Zhu & Ying Wang & Zheng Jiang & Jin Zhao & Junjie Ge & Meiling Xiao & Changpeng Liu & Wei Xing, 2024. "Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Xixi Liu & Liang Huang & Yuandie Ma & Guoqiang She & Peng Zhou & Liangfang Zhu & Zehui Zhang, 2024. "Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Feng Wu & Xiaokang Liu & Shiqi Wang & Longfei Hu & Sebastian Kunze & Zhenggang Xue & Zehao Shen & Yaxiong Yang & Xinqiang Wang & Minghui Fan & Hongge Pan & Xiaoping Gao & Tao Yao & Yuen Wu, 2024. "Identification of K+-determined reaction pathway for facilitated kinetics of CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Yaqoob, Lubna & Noor, Tayyaba & Iqbal, Naseem & Nasir, Habib & Sohail, Manzar & Zaman, Neelam & Usman, Muhammad, 2020. "Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER)," Renewable Energy, Elsevier, vol. 156(C), pages 1040-1054.
    17. Xin Wan & Qingtao Liu & Jieyuan Liu & Shiyuan Liu & Xiaofang Liu & Lirong Zheng & Jiaxiang Shang & Ronghai Yu & Jianglan Shui, 2022. "Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Yumei Liu & Yun An & Jiexin Zhu & Lujun Zhu & Xiaomei Li & Peng Gao & Guanjie He & Quanquan Pang, 2024. "Integrated energy storage and CO2 conversion using an aqueous battery with tamed asymmetric reactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51858-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.