IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46574-4.html
   My bibliography  Save this article

Automated in vivo enzyme engineering accelerates biocatalyst optimization

Author

Listed:
  • Enrico Orsi

    (Technical University of Denmark)

  • Lennart Schada von Borzyskowski

    (Leiden University)

  • Stephan Noack

    (IBG-1: Biotechnology, Forschungszentrum Jülich)

  • Pablo I. Nikel

    (Technical University of Denmark)

  • Steffen N. Lindner

    (Max Planck Institute of Molecular Plant Physiology
    Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität)

Abstract

Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.

Suggested Citation

  • Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46574-4
    DOI: 10.1038/s41467-024-46574-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46574-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46574-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir Pandi & Christoph Diehl & Ali Yazdizadeh Kharrazi & Scott A. Scholz & Elizaveta Bobkova & Léon Faure & Maren Nattermann & David Adam & Nils Chapin & Yeganeh Foroughijabbari & Charles Moritz & Nic, 2022. "A versatile active learning workflow for optimization of genetic and metabolic networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Joseph L. Watson & David Juergens & Nathaniel R. Bennett & Brian L. Trippe & Jason Yim & Helen E. Eisenach & Woody Ahern & Andrew J. Borst & Robert J. Ragotte & Lukas F. Milles & Basile I. M. Wicky & , 2023. "De novo design of protein structure and function with RFdiffusion," Nature, Nature, vol. 620(7976), pages 1089-1100, August.
    3. Andy Hsien-Wei Yeh & Christoffer Norn & Yakov Kipnis & Doug Tischer & Samuel J. Pellock & Declan Evans & Pengchen Ma & Gyu Rie Lee & Jason Z. Zhang & Ivan Anishchenko & Brian Coventry & Longxing Cao &, 2023. "De novo design of luciferases using deep learning," Nature, Nature, vol. 614(7949), pages 774-780, February.
    4. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    5. Harris H. Wang & Farren J. Isaacs & Peter A. Carr & Zachary Z. Sun & George Xu & Craig R. Forest & George M. Church, 2009. "Programming cells by multiplex genome engineering and accelerated evolution," Nature, Nature, vol. 460(7257), pages 894-898, August.
    6. Nobuhiko Tokuriki & Colin J. Jackson & Livnat Afriat-Jurnou & Kirsten T. Wyganowski & Renmei Tang & Dan S. Tawfik, 2012. "Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    7. Aaron Cravens & Osman K. Jamil & Deze Kong & Jonathan T. Sockolosky & Christina D. Smolke, 2021. "Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Sarah L. Lovelock & Rebecca Crawshaw & Sophie Basler & Colin Levy & David Baker & Donald Hilvert & Anthony P. Green, 2022. "The road to fully programmable protein catalysis," Nature, Nature, vol. 606(7912), pages 49-58, June.
    9. Beatriz Álvarez & Mario Mencía & Víctor Lorenzo & Luis Ángel Fernández, 2020. "In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    10. Kevin M. Esvelt & Jacob C. Carlson & David R. Liu, 2011. "A system for the continuous directed evolution of biomolecules," Nature, Nature, vol. 472(7344), pages 499-503, April.
    11. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    12. Axel von Kamp & Steffen Klamt, 2017. "Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    13. Ahmed H. Badran & David R. Liu, 2015. "Development of potent in vivo mutagenesis plasmids with broad mutational spectra," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    14. Shakked O. Halperin & Connor J. Tou & Eric B. Wong & Cyrus Modavi & David V. Schaffer & John E. Dueber, 2018. "CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window," Nature, Nature, vol. 560(7717), pages 248-252, August.
    15. Edward King & Sarah Maxel & Yulai Zhang & Karissa C. Kenney & Youtian Cui & Emma Luu & Justin B. Siegel & Gregory A. Weiss & Ray Luo & Han Li, 2022. "Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Shuangjia Zheng & Tao Zeng & Chengtao Li & Binghong Chen & Connor W. Coley & Yuedong Yang & Ruibo Wu, 2022. "Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Enrico Orsi & Nico J. Claassens & Pablo I. Nikel & Steffen N. Lindner, 2021. "Growth-coupled selection of synthetic modules to accelerate cell factory development," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    18. Linyue Zhang & Edward King & William B. Black & Christian M. Heckmann & Allison Wolder & Youtian Cui & Francis Nicklen & Justin B. Siegel & Ray Luo & Caroline E. Paul & Han Li, 2022. "Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Laura Marie Helleckes & Michael Osthege & Wolfgang Wiechert & Eric von Lieres & Marco Oldiges, 2022. "Bayesian calibration, process modeling and uncertainty quantification in biotechnology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-47, March.
    20. Shuke Wu & Chao Xiang & Yi Zhou & Mohammad Saiful Hasan Khan & Weidong Liu & Christian G. Feiler & Ren Wei & Gert Weber & Matthias Höhne & Uwe T. Bornscheuer, 2022. "A growth selection system for the directed evolution of amine-forming or converting enzymes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    21. Gordon Rix & Ella J. Watkins-Dulaney & Patrick J. Almhjell & Christina E. Boville & Frances H. Arnold & Chang C. Liu, 2020. "Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Timothy P. Newing & Jodi L. Brewster & Lucy J. Fitschen & James C. Bouwer & Nikolas P. Johnston & Haibo Yu & Gökhan Tolun, 2022. "Redβ177 annealase structure reveals details of oligomerization and λ Red-mediated homologous DNA recombination," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Simon d’Oelsnitz & Daniel J. Diaz & Wantae Kim & Daniel J. Acosta & Tyler L. Dangerfield & Mason W. Schechter & Matthew B. Minus & James R. Howard & Hannah Do & James M. Loy & Hal S. Alper & Y. Jessie, 2024. "Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Dan Kozome & Adnan Sljoka & Paola Laurino, 2024. "Remote loop evolution reveals a complex biological function for chitinase enzymes beyond the active site," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    12. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46574-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.