IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61315-x.html
   My bibliography  Save this article

MIC: A deep learning tool for assigning ions and waters in cryo-EM and crystal structures

Author

Listed:
  • Laura Shub

    (University of California, San Francisco
    University of California, San Francisco)

  • Wenjin Liu

    (University of California, San Francisco
    University of California, San Francisco)

  • Georgios Skiniotis

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Michael J. Keiser

    (University of California, San Francisco
    University of California, San Francisco)

  • Michael J. Robertson

    (Baylor College of Medicine)

Abstract

At sufficiently high resolution, x-ray crystallography and cryogenic electron microscopy are capable of resolving small spherical map features corresponding to either water or ions. Correct classification of these sites provides crucial insight for understanding structure and function as well as guiding downstream design tasks, including structure-based drug discovery and de novo biomolecule design. However, direct identification of these sites from experimental data can prove challenging, and existing empirical approaches leveraging the local environment can only characterize limited ion types. We present a representation of chemical environments using interaction fingerprints and develop a machine learning model to predict the identity of input water and ion sites. We validate the method, named Metric Ion Classification (MIC), on a wide variety of biomolecular examples to demonstrate its utility, identifying many probable mismodeled ions deposited in the PDB. Compared to existing methods, MIC achieves superior accuracy for uniquely classifying water/ion sites while expanding the set of potential site identities. Finally, we collect all steps of this approach into an easy-to-use open-source package that can integrate with existing structure determination pipelines, and we provide a ChimeraX implementation to further enable use of the tool.

Suggested Citation

  • Laura Shub & Wenjin Liu & Georgios Skiniotis & Michael J. Keiser & Michael J. Robertson, 2025. "MIC: A deep learning tool for assigning ions and waters in cryo-EM and crystal structures," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61315-x
    DOI: 10.1038/s41467-025-61315-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61315-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61315-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph L. Watson & David Juergens & Nathaniel R. Bennett & Brian L. Trippe & Jason Yim & Helen E. Eisenach & Woody Ahern & Andrew J. Borst & Robert J. Ragotte & Lukas F. Milles & Basile I. M. Wicky & , 2023. "De novo design of protein structure and function with RFdiffusion," Nature, Nature, vol. 620(7976), pages 1089-1100, August.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Kiarash Jamali & Lukas Käll & Rui Zhang & Alan Brown & Dari Kimanius & Sjors H. W. Scheres, 2024. "Automated model building and protein identification in cryo-EM maps," Nature, Nature, vol. 628(8007), pages 450-457, April.
    4. Jiahua He & Tao Li & Sheng-You Huang, 2023. "Improvement of cryo-EM maps by simultaneous local and non-local deep learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Takanori Nakane & Abhay Kotecha & Andrija Sente & Greg McMullan & Simonas Masiulis & Patricia M. G. E. Brown & Ioana T. Grigoras & Lina Malinauskaite & Tomas Malinauskas & Jonas Miehling & Tomasz Ucha, 2020. "Single-particle cryo-EM at atomic resolution," Nature, Nature, vol. 587(7832), pages 152-156, November.
    7. Peiyu Xu & Sijie Huang & Huibing Zhang & Chunyou Mao & X. Edward Zhou & Xi Cheng & Icaro A. Simon & Dan-Dan Shen & Hsin-Yung Yen & Carol V. Robinson & Kasper Harpsøe & Bo Svensson & Jia Guo & Hualiang, 2021. "Structural insights into the lipid and ligand regulation of serotonin receptors," Nature, Nature, vol. 592(7854), pages 469-473, April.
    8. Jiankun Lyu & Sheng Wang & Trent E. Balius & Isha Singh & Anat Levit & Yurii S. Moroz & Matthew J. O’Meara & Tao Che & Enkhjargal Algaa & Kateryna Tolmachova & Andrey A. Tolmachev & Brian K. Shoichet , 2019. "Ultra-large library docking for discovering new chemotypes," Nature, Nature, vol. 566(7743), pages 224-229, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arne Matthys & Jan Felix & Joao Paulo Portela Catani & Kenny Roose & Wim Nerinckx & Benthe Buyten & Daria Fijalkowska & Nico Callewaert & Savvas N. Savvides & Xavier Saelens, 2025. "Single-domain antibodies directed against hemagglutinin and neuraminidase protect against influenza B viruses," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    2. Shota Suzuki & Kotaro Tanaka & Kouki Nishikawa & Hiroshi Suzuki & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Hyunwook Lee & Ruben Assaraf & Suriyasri Subramanian & Dan Goetschius & Jan Bieri & Nadia M. DiNunno & Remo Leisi & Carol M. Bator & Susan L. Hafenstein & Carlos Ros, 2024. "Infectious parvovirus B19 circulates in the blood coated with active host protease inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Nitesh Kumar Khandelwal & Thomas M. Tomasiak, 2024. "Structural basis for autoinhibition by the dephosphorylated regulatory domain of Ycf1," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Daniel R. Fox & Kazem Asadollahi & Imogen Samuels & Bradley A. Spicer & Ashleigh Kropp & Christopher J. Lupton & Kevin Lim & Chunxiao Wang & Hari Venugopal & Marija Dramicanin & Gavin J. Knott & Rhys , 2025. "Inhibiting heme piracy by pathogenic Escherichia coli using de novo-designed proteins," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Hui Zhang & Dihan Zheng & Qiurong Wu & Nieng Yan & Han Peng & Qi Hu & Ying Peng & Zhaofeng Yan & Zuoqiang Shi & Chenglong Bao & Mingxu Hu, 2025. "CryoPROS: Correcting misalignment caused by preferred orientation using AI-generated auxiliary particles," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    7. Alexander Stevens & Saarang Kashyap & Ethan H. Crofut & Shuqi E. Wang & Katherine A. Muratore & Patricia J. Johnson & Z. Hong Zhou, 2025. "Structures of Native Doublet Microtubules from Trichomonas vaginalis Reveal Parasite-Specific Proteins," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Lifan Chen & Zisheng Fan & Jie Chang & Ruirui Yang & Hui Hou & Hao Guo & Yinghui Zhang & Tianbiao Yang & Chenmao Zhou & Qibang Sui & Zhengyang Chen & Chen Zheng & Xinyue Hao & Keke Zhang & Rongrong Cu, 2023. "Sequence-based drug design as a concept in computational drug design," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Yash Chainani & Jacob Diaz & Margaret Guilarte-Silva & Vincent Blay & Quan Zhang & William Sprague & Keith E. J. Tyo & Linda J. Broadbelt & Aindrila Mukhopadhyay & Jay D. Keasling & Hector Garcia Mart, 2025. "Merging the computational design of chimeric type I polyketide synthases with enzymatic pathways for chemical biosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Masa Janosev & Dalibor Kosek & Andrej Tekel & Rohit Joshi & Karolina Honzejkova & Pavel Pohl & Tomas Obsil & Veronika Obsilova, 2025. "Structural basis of ubiquitin ligase Nedd4-2 autoinhibition and regulation by calcium and 14-3-3 proteins," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    12. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Na Wang & Xinheng He & Jing Zhao & Hualiang Jiang & Xi Cheng & Yu Xia & H. Eric Xu & Yuanzheng He, 2022. "Structural basis of leukotriene B4 receptor 1 activation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Meghana Kshirsagar & Artur Meller & Ian R. Humphreys & Samuel Sledzieski & Yixi Xu & Rahul Dodhia & Eric Horvitz & Bonnie Berger & Gregory R. Bowman & Juan Lavista Ferres & David Baker & Minkyung Baek, 2025. "Rapid and accurate prediction of protein homo-oligomer symmetry using Seq2Symm," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Sheng Chen & Sen Zhang & Xiaoyu Fang & Liang Lin & Huiying Zhao & Yuedong Yang, 2024. "Protein complex structure modeling by cross-modal alignment between cryo-EM maps and protein sequences," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Chase R. Freschlin & Sarah A. Fahlberg & Pete Heinzelman & Philip A. Romero, 2024. "Neural network extrapolation to distant regions of the protein fitness landscape," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. R. Čepaitė & N. Klein & A. Mikšys & S. Camara-Wilpert & V. Ragožius & F. Benz & A. Skorupskaitė & H. Becker & G. Žvejytė & N. Steube & G.K.A Hochberg & L. Randau & R. Pinilla-Redondo & L. Malinauskait, 2024. "Structural variation of types IV-A1- and IV-A3-mediated CRISPR interference," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Isak S. Pretorius & Thomas A. Dixon & Michael Boers & Ian T. Paulsen & Daniel L. Johnson, 2025. "The coming wave of confluent biosynthetic, bioinformational and bioengineering technologies," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    19. Anjun Zheng & Bram J. A. Vermeulen & Martin Würtz & Annett Neuner & Nicole Lübbehusen & Matthias P. Mayer & Elmar Schiebel & Stefan Pfeffer, 2025. "Structural insights into the interplay between microtubule polymerases, γ-tubulin complexes and their receptors," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    20. Bozhidar S. Ivanov & Hannah R. Bridges & Owen D. Jarman & Judy Hirst, 2024. "Structure of the turnover-ready state of an ancestral respiratory complex I," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61315-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.