IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45896-7.html
   My bibliography  Save this article

A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction

Author

Listed:
  • Abhishek Sharma

    (University Avenue)

  • Marcus Tze-Kiat Ng

    (University Avenue)

  • Juan Manuel Parrilla Gutierrez

    (University Avenue)

  • Yibin Jiang

    (University Avenue)

  • Leroy Cronin

    (University Avenue)

Abstract

The exponential growth of the power of modern digital computers is based upon the miniaturization of vast nanoscale arrays of electronic switches, but this will be eventually constrained by fabrication limits and power dissipation. Chemical processes have the potential to scale beyond these limits by performing computations through chemical reactions, yet the lack of well-defined programmability limits their scalability and performance. Here, we present a hybrid digitally programmable chemical array as a probabilistic computational machine that uses chemical oscillators using Belousov-Zhabotinsky reaction partitioned in interconnected cells as a computational substrate. This hybrid architecture performs efficient computation by distributing information between chemical and digital domains together with inbuilt error correction logic. The efficiency is gained by combining digital logic with probabilistic chemical logic based on nearest neighbour interactions and hysteresis effects. We demonstrated the computational capabilities of our hybrid processor by implementing one- and two-dimensional Chemical Cellular Automata demonstrating emergent dynamics of life-like entities called Chemits. Additionally, we demonstrate hybrid probabilistic logic as a viable logic for solving combinatorial optimization problems.

Suggested Citation

  • Abhishek Sharma & Marcus Tze-Kiat Ng & Juan Manuel Parrilla Gutierrez & Yibin Jiang & Leroy Cronin, 2024. "A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45896-7
    DOI: 10.1038/s41467-024-45896-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45896-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45896-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Jacob Torrejon & Mathieu Riou & Flavio Abreu Araujo & Sumito Tsunegi & Guru Khalsa & Damien Querlioz & Paolo Bortolotti & Vincent Cros & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa , 2017. "Neuromorphic computing with nanoscale spintronic oscillators," Nature, Nature, vol. 547(7664), pages 428-431, July.
    3. Charles H. Bennett & David P. DiVincenzo, 2000. "Quantum information and computation," Nature, Nature, vol. 404(6775), pages 247-255, March.
    4. Juan Manuel Parrilla-Gutierrez & Abhishek Sharma & Soichiro Tsuda & Geoffrey J. T. Cooper & Gerardo Aragon-Camarasa & Kevin Donkers & Leroy Cronin, 2020. "A programmable chemical computer with memory and pattern recognition," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mzaouali, Zakaria & El Baz, Morad, 2019. "Long range quantum coherence, quantum & classical correlations in Heisenberg XX chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 119-130.
    2. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    6. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    7. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Zhang, Li-Hua & Yang, Ming & Cao, Zhuo-Liang, 2007. "Entanglement concentration for unknown W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 611-616.
    9. Maćešić, Stevan & Čupić, Željko & Kolar-Anić, Ljiljana, 2023. "Effect of diffusion on steady state stability of an oscillatory reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    14. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Ducuara, Andrés F. & Susa, Cristian E. & Reina, John H., 2022. "Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    16. Costa, A.C.S. & Beims, M.W. & Angelo, R.M., 2016. "Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths a," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 469-479.
    17. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Reis, Mauricio & Oliveira, Adelcio C., 2022. "A complementary resource relation of concurrence and roughness for a two-qubit state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    20. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45896-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.