IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58932-x.html
   My bibliography  Save this article

Voltage-controlled magnetoelectric devices for neuromorphic diffusion process

Author

Listed:
  • Yang Cheng

    (University of California)

  • Qingyuan Shu

    (University of California)

  • Albert Lee

    (University of California)

  • Haoran He

    (University of California)

  • Ivy Zhu

    (The Ohio State University)

  • Minzhang Chen

    (University of California)

  • Renhe Chen

    (University of California)

  • Zirui Wang

    (University of California)

  • Hantao Zhang

    (University of California)

  • Chih-Yao Wang

    (Industrial Technology Research Institute)

  • Shan-Yi Yang

    (Industrial Technology Research Institute)

  • Yu-Chen Hsin

    (Industrial Technology Research Institute)

  • Cheng-Yi Shih

    (Industrial Technology Research Institute)

  • Hsin-Han Lee

    (Industrial Technology Research Institute)

  • Ran Cheng

    (University of California
    University of California)

  • Kang L. Wang

    (University of California)

Abstract

Neuromorphic diffusion models have become one of the major breakthroughs in the field of generative artificial intelligence. Unlike discriminative models that have been well developed to tackle classification or regression tasks, diffusion models aim at creating content based upon contexts learned. However, the more complex algorithms of these models result in high computational costs using today’s technologies. Here, we develop a spintronic voltage-controlled magnetoelectric memory hardware for the neuromorphic diffusion process. The in-memory computing capability of our spintronic devices goes beyond current Von Neumann architecture, where memory and computing units are separated. Together with the non-volatility of magnetic memory, we can achieve high-speed and low-cost computing, which is desirable for the increasing scale of generative models in the current era. We experimentally demonstrate that the hardware-based true random diffusion process can be implemented for image generation and achieve comparable image quality to software-based training as measured by the Fréchet inception distance (FID) score, achieving ~103 better energy-per-bit-per-area over traditional hardware.

Suggested Citation

  • Yang Cheng & Qingyuan Shu & Albert Lee & Haoran He & Ivy Zhu & Minzhang Chen & Renhe Chen & Zirui Wang & Hantao Zhang & Chih-Yao Wang & Shan-Yi Yang & Yu-Chen Hsin & Cheng-Yi Shih & Hsin-Han Lee & Ran, 2025. "Voltage-controlled magnetoelectric devices for neuromorphic diffusion process," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58932-x
    DOI: 10.1038/s41467-025-58932-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58932-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58932-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shinji Miwa & Motohiro Suzuki & Masahito Tsujikawa & Kensho Matsuda & Takayuki Nozaki & Kazuhito Tanaka & Takuya Tsukahara & Kohei Nawaoka & Minori Goto & Yoshinori Kotani & Tadakatsu Ohkubo & Frédéri, 2017. "Voltage controlled interfacial magnetism through platinum orbits," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Dongsheng Yang & Taeheon Kim & Kyusup Lee & Chang Xu & Yakun Liu & Fei Wang & Shishun Zhao & Dushyant Kumar & Hyunsoo Yang, 2024. "Spin-orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Jacob Torrejon & Mathieu Riou & Flavio Abreu Araujo & Sumito Tsunegi & Guru Khalsa & Damien Querlioz & Paolo Bortolotti & Vincent Cros & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa , 2017. "Neuromorphic computing with nanoscale spintronic oscillators," Nature, Nature, vol. 547(7664), pages 428-431, July.
    4. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Flavio Abreu Araujo & Vincent Cros & Paolo Bortolotti & Juan Trastoy & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Maxence E, 2018. "Vowel recognition with four coupled spin-torque nano-oscillators," Nature, Nature, vol. 563(7730), pages 230-234, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Irena Spasojevic & Zheng Ma & Aleix Barrera & Federica Celegato & Alessandro Magni & Sandra Ruiz-Gómez & Michael Foerster & Anna Palau & Paola Tiberto & Kristen S. Buchanan & Jordi Sort, 2025. "Magneto-ionic vortices: voltage-reconfigurable swirling-spin analog-memory nanomagnets," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Jong-Guk Choi & Jaehyeon Park & Min-Gu Kang & Doyoon Kim & Jae-Sung Rieh & Kyung-Jin Lee & Kab-Jin Kim & Byong-Guk Park, 2022. "Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Vincent Cros & Paolo Bortolotti & Maxence Ernoult & Damien Querlioz & Julie Grol, 2022. "Binding events through the mutual synchronization of spintronic nano-neurons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Jing Gao & Yu-Chieh Chien & Jiali Huo & Lingqi Li & Haofei Zheng & Heng Xiang & Kah-Wee Ang, 2025. "Reconfigurable neuromorphic functions in antiferroelectric transistors through coupled polarization switching and charge trapping dynamics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. S. Jiang & S. Chung & M. Ahlberg & A. Frisk & R. Khymyn & Q. Tuan Le & H. Mazraati & A. Houshang & O. Heinonen & J. Åkerman, 2024. "Magnetic droplet soliton pairs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Keqiang Zhu & Mario Carpentieri & Like Zhang & Bin Fang & Jialin Cai & Roman Verba & Anna Giordano & Vito Puliafito & Baoshun Zhang & Giovanni Finocchio & Zhongming Zeng, 2023. "Nonlinear amplification of microwave signals in spin-torque oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. ZhuangEn Fu & Piumi I. Samarawickrama & John Ackerman & Yanglin Zhu & Zhiqiang Mao & Kenji Watanabe & Takashi Taniguchi & Wenyong Wang & Yuri Dahnovsky & Mingzhong Wu & TeYu Chien & Jinke Tang & Allan, 2024. "Tunneling current-controlled spin states in few-layer van der Waals magnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58932-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.