IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44406-5.html
   My bibliography  Save this article

Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines

Author

Listed:
  • Angus Atkinson

    (Plymouth Marine Laboratory, Prospect Place, The Hoe)

  • Axel G. Rossberg

    (Queen Mary University of London)

  • Ursula Gaedke

    (University of Potsdam)

  • Gary Sprules

    (University of Toronto Mississauga)

  • Ryan F. Heneghan

    (School of Mathematical Sciences, Queensland University of Technology)

  • Stratos Batziakas

    (Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214)

  • Maria Grigoratou

    (Mercator Ocean International)

  • Elaine Fileman

    (Plymouth Marine Laboratory, Prospect Place, The Hoe)

  • Katrin Schmidt

    (University of Plymouth, School of Geography, Earth and Environmental Sciences)

  • Constantin Frangoulis

    (Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214)

Abstract

Under climate change, model ensembles suggest that declines in phytoplankton biomass amplify into greater reductions at higher trophic levels, with serious implications for fisheries and carbon storage. However, the extent and mechanisms of this trophic amplification vary greatly among models, and validation is problematic. In situ size spectra offer a novel alternative, comparing biomass of small and larger organisms to quantify the net efficiency of energy transfer through natural food webs that are already challenged with multiple climate change stressors. Our global compilation of pelagic size spectrum slopes supports trophic amplification empirically, independently from model simulations. Thus, even a modest (16%) decline in phytoplankton this century would magnify into a 38% decline in supportable biomass of fish within the intensively-fished mid-latitude ocean. We also show that this amplification stems not from thermal controls on consumers, but mainly from temperature or nutrient controls that structure the phytoplankton baseline of the food web. The lack of evidence for direct thermal effects on size structure contrasts with most current thinking, based often on more acute stress experiments or shorter-timescale responses. Our synthesis of size spectra integrates these short-term dynamics, revealing the net efficiency of food webs acclimating and adapting to climatic stressors.

Suggested Citation

  • Angus Atkinson & Axel G. Rossberg & Ursula Gaedke & Gary Sprules & Ryan F. Heneghan & Stratos Batziakas & Maria Grigoratou & Elaine Fileman & Katrin Schmidt & Constantin Frangoulis, 2024. "Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44406-5
    DOI: 10.1038/s41467-023-44406-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44406-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44406-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hans G. Dam & James A. deMayo & Gihong Park & Lydia Norton & Xuejia He & Michael B. Finiguerra & Hannes Baumann & Reid S. Brennan & Melissa H. Pespeni, 2021. "Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification," Nature Climate Change, Nature, vol. 11(9), pages 780-786, September.
    2. Axel G. Rossberg & Ursula Gaedke & Pavel Kratina, 2019. "Dome patterns in pelagic size spectra reveal strong trophic cascades," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Philip W. Boyd & Hervé Claustre & Marina Levy & David A. Siegel & Thomas Weber, 2019. "Multi-faceted particle pumps drive carbon sequestration in the ocean," Nature, Nature, vol. 568(7752), pages 327-335, April.
    4. Derek P. Tittensor & Camilla Novaglio & Cheryl S. Harrison & Ryan F. Heneghan & Nicolas Barrier & Daniele Bianchi & Laurent Bopp & Andrea Bryndum-Buchholz & Gregory L. Britten & Matthias Büchner & Wil, 2021. "Next-generation ensemble projections reveal higher climate risks for marine ecosystems," Nature Climate Change, Nature, vol. 11(11), pages 973-981, November.
    5. Rebecca L. Kordas & Samraat Pawar & Dimitrios-Georgios Kontopoulos & Guy Woodward & Eoin J. O’Gorman, 2022. "Metabolic plasticity can amplify ecosystem responses to global warming," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. M. Barange & G. Merino & J. L. Blanchard & J. Scholtens & J. Harle & E. H. Allison & J. I. Allen & J. Holt & S. Jennings, 2014. "Impacts of climate change on marine ecosystem production in societies dependent on fisheries," Nature Climate Change, Nature, vol. 4(3), pages 211-216, March.
    7. David A Carozza & Daniele Bianchi & Eric D Galbraith, 2017. "Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Siddiqui & Tim Rixen & Niko Lahajnar & Anja K. Van der Plas & Deon C. Louw & Tarron Lamont & Keshnee Pillay, 2023. "Regional and global impact of CO2 uptake in the Benguela Upwelling System through preformed nutrients," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Mullon, C. & Steinmetz, F. & Merino, G. & Fernandes, J.A. & Cheung, W.W.L. & Butenschön, M. & Barange, M., 2016. "Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological–economic and governance modelling scenarios," Ecological Modelling, Elsevier, vol. 320(C), pages 273-291.
    3. Léo Lacour & Joan Llort & Nathan Briggs & Peter G. Strutton & Philip W. Boyd, 2023. "Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Kristen M. Green & Jennifer C. Selgrath & Timothy H. Frawley & William K. Oestreich & Elizabeth J. Mansfield & Jose Urteaga & Shannon S. Swanson & Francisca N. Santana & Stephanie J. Green & Josheena , 2021. "How adaptive capacity shapes the Adapt, React, Cope response to climate impacts: insights from small-scale fisheries," Climatic Change, Springer, vol. 164(1), pages 1-22, January.
    5. Thi Lam Pham & Izuru Saizen, 2023. "Coastal fishers’ livelihood adaptations to extreme weather events: an analysis of household strategies in Quang Ngai Province, Vietnam," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    6. Benoit, David M. & Giacomini, Henrique C. & Chu, Cindy & Jackson, Donald A., 2021. "Identifying influential parameters of a multi-species fish size spectrum model for a northern temperate lake through sensitivity analyses," Ecological Modelling, Elsevier, vol. 460(C).
    7. Henrique Cabral & Vanessa Fonseca & Tânia Sousa & Miguel Costa Leal, 2019. "Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas," IJERPH, MDPI, vol. 16(15), pages 1-17, July.
    8. Vasquez Caballero, Smit & Salgueiro-Otero, Diego & Ojea, Elena, 2023. "The Role of Catch Portfolios in Characterizing Species' Economic Linkages and Fishers' Responses to Climate Change Impacts," Ecological Economics, Elsevier, vol. 205(C).
    9. Nobuhle Ndhlovu & Osamu Saito & Riyanti Djalante & Nobuyuki Yagi, 2017. "Assessing the Sensitivity of Small-Scale Fishery Groups to Climate Change in Lake Kariba, Zimbabwe," Sustainability, MDPI, vol. 9(12), pages 1-18, November.
    10. Alexia M. González-Ferreras & Jose Barquín & Penelope S. A. Blyth & Jack Hawksley & Hugh Kinsella & Rasmus Lauridsen & Olivia F. Morris & Francisco J. Peñas & Gareth E. Thomas & Guy Woodward & Lei Zha, 2023. "Chronic exposure to environmental temperature attenuates the thermal sensitivity of salmonids," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Chu, Long & Grafton, R. Quentin & Kompas, Tom, 2022. "Optimisation of economic performance and stock resilience in marine capture fisheries," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 863-875.
    12. Reid S. Brennan & James A. deMayo & Hans G. Dam & Michael B. Finiguerra & Hannes Baumann & Melissa H. Pespeni, 2022. "Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Heenan, Adel & Pomeroy, Robert & Bell, Johann & Munday, Philip L. & Cheung, William & Logan, Cheryl & Brainard, Russell & Yang Amri, Affendi & Aliño, Porfirio & Armada, Nygiel & David, Laura & Rivera-, 2015. "A climate-informed, ecosystem approach to fisheries management," Marine Policy, Elsevier, vol. 57(C), pages 182-192.
    14. Joshua E. Cinner & Iain R. Caldwell & Lauric Thiault & John Ben & Julia L. Blanchard & Marta Coll & Amy Diedrich & Tyler D. Eddy & Jason D. Everett & Christian Folberth & Didier Gascuel & Jerome Guiet, 2022. "Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Rasmus Swalethorp & Michael R. Landry & Brice X. Semmens & Mark D. Ohman & Lihini Aluwihare & Dereka Chargualaf & Andrew R. Thompson, 2023. "Anchovy boom and bust linked to trophic shifts in larval diet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Moscoso, Jordyn E. & Bianchi, Daniele & Stewart, Andrew L., 2022. "Controls and characteristics of biomass quantization in size-structured planktonic ecosystem models," Ecological Modelling, Elsevier, vol. 468(C).
    17. Abdunnur Abdunnur, 2020. "Nexus of Fisheries and Agriculture Production and Urbanization on Ecological Footprint: New Evidence from Indonesian Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 190-195.
    18. Wei-Lei Wang & Mar Fernández-Méndez & Franziska Elmer & Guang Gao & Yangyang Zhao & Yuye Han & Jiandong Li & Fei Chai & Minhan Dai, 2023. "Ocean afforestation is a potentially effective way to remove carbon dioxide," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    19. Cheung, William W.L. & Jones, Miranda C. & Reygondeau, Gabriel & Stock, Charles A. & Lam, Vicky W.Y. & Frölicher, Thomas L., 2016. "Structural uncertainty in projecting global fisheries catches under climate change," Ecological Modelling, Elsevier, vol. 325(C), pages 57-66.
    20. Qi Chen & Weiteng Shen & Bing Yu, 2018. "Assessing the Vulnerability of Marine Fisheries in China: Towards an Inter-Provincial Perspective," Sustainability, MDPI, vol. 10(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44406-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.