IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43499-2.html
   My bibliography  Save this article

Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport

Author

Listed:
  • Manuel O. Gutierrez-Villanueva

    (University of California San Diego)

  • Teresa K. Chereskin

    (University of California San Diego)

  • Janet Sprintall

    (University of California San Diego)

Abstract

Although the westerly winds that drive the Antarctic Circumpolar Current (ACC) have increased over the past several decades, the ACC response remains an open question. Here we use a 15-year time series of concurrent upper-ocean temperature, salinity, and ocean velocity with high spatial resolution across Drake Passage to analyze whether the net Drake Passage transport has accelerated in the last 15 years. We find that, although the net Drake Passage transport relative to 760 m shows insignificant acceleration, the net transport trend comprises compensating trends across the ACC frontal regions. Our results show an increase in the mesoscale eddy activity between the fronts consistent with buoyancy changes in the fronts and with an eddy saturation state. Furthermore, the increased eddy activity may play a role in redistributing momentum across the ACC frontal regions. The increase in eddy activity is expected to intensify the eddy-driven upwelling of deep warm waters around Antarctica, which has significant implications for ice-melting, sea level rise, and global climate.

Suggested Citation

  • Manuel O. Gutierrez-Villanueva & Teresa K. Chereskin & Janet Sprintall, 2023. "Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43499-2
    DOI: 10.1038/s41467-023-43499-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43499-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43499-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthis Auger & Rosemary Morrow & Elodie Kestenare & Jean-Baptiste Sallée & Rebecca Cowley, 2021. "Publisher Correction: Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    2. Ryan L. Fogt & Gareth J. Marshall, 2020. "The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    3. Matthis Auger & Rosemary Morrow & Elodie Kestenare & Jean-Baptiste Sallée & Rebecca Cowley, 2021. "Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Jia-Rui Shi & Lynne D. Talley & Shang-Ping Xie & Qihua Peng & Wei Liu, 2021. "Ocean warming and accelerating Southern Ocean zonal flow," Nature Climate Change, Nature, vol. 11(12), pages 1090-1097, December.
    5. H. D. Pritchard & S. R. M. Ligtenberg & H. A. Fricker & D. G. Vaughan & M. R. van den Broeke & L. Padman, 2012. "Antarctic ice-sheet loss driven by basal melting of ice shelves," Nature, Nature, vol. 484(7395), pages 502-505, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Camille Hayatte Akhoudas & Jean-Baptiste Sallée & Gilles Reverdin & F. Alexander Haumann & Etienne Pauthenet & Christopher C. Chapman & Félix Margirier & Claire Lo Monaco & Nicolas Metzl & Julie Meill, 2023. "Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Lu, Yifan & Yamazaki, Satoshi, 2023. "Antarctic Sanctuary: Behavioural Impact of International Marine Protected Areas," 2023 Annual Meeting, July 23-25, Washington D.C. 335483, Agricultural and Applied Economics Association.
    4. Pearse J. Buchanan & Olivier Aumont & Laurent Bopp & Claire Mahaffey & Alessandro Tagliabue, 2021. "Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Shuai Zhang & Zhoufei Yu & Yue Wang & Xun Gong & Ann Holbourn & Fengming Chang & Heng Liu & Xuhua Cheng & Tiegang Li, 2022. "Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Zhuo Zhang & Changsheng Chen & Zhiyao Song & Dong Zhang & Di Hu & Fei Guo, 2020. "A FVCOM study of the potential coastal flooding in apponagansett bay and clarks cove, Dartmouth Town (MA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2787-2809, September.
    9. Tom Holt & Neil Glasser & Duncan Quincey, 2013. "The structural glaciology of southwest Antarctic Peninsula Ice Shelves (ca. 2010)," Journal of Maps, Taylor & Francis Journals, vol. 9(4), pages 523-531, December.
    10. Rongxing Li & Yuan Cheng & Tian Chang & David E. Gwyther & Martin Forbes & Lu An & Menglian Xia & Xiaohan Yuan & Gang Qiao & Xiaohua Tong & Wenkai Ye, 2023. "Satellite record reveals 1960s acceleration of Totten Ice Shelf in East Antarctica," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Benjamin A. Storer & Michele Buzzicotti & Hemant Khatri & Stephen M. Griffies & Hussein Aluie, 2022. "Global energy spectrum of the general oceanic circulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Adrián Cardil & Marcos Rodrigues & Mario Tapia & Renaud Barbero & Joaquin Ramírez & Cathelijne R. Stoof & Carlos Alberto Silva & Midhun Mohan & Sergio de-Miguel, 2023. "Climate teleconnections modulate global burned area," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. A. Slangen & M. Carson & C. Katsman & R. van de Wal & A. Köhl & L. Vermeersen & D. Stammer, 2014. "Projecting twenty-first century regional sea-level changes," Climatic Change, Springer, vol. 124(1), pages 317-332, May.
    14. H. W. Yang & T.-W. Kim & Pierre Dutrieux & A. K. Wåhlin & Adrian Jenkins & H. K. Ha & C. S. Kim & K.-H. Cho & T. Park & S. H. Lee & Y.-K. Cho, 2022. "Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Changsheng Chen & Zhaolin Lin & Robert C. Beardsley & Tom Shyka & Yu Zhang & Qichun Xu & Jianhua Qi & Huichan Lin & Danya Xu, 2021. "Impacts of sea level rise on future storm-induced coastal inundations over massachusetts coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 375-399, March.
    16. Henning Åkesson & Mathieu Morlighem & Johan Nilsson & Christian Stranne & Martin Jakobsson, 2022. "Petermann ice shelf may not recover after a future breakup," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Simon Dietz & Felix Koninx, 2022. "Economic impacts of melting of the Antarctic Ice Sheet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Andrea Storto & Chunxue Yang, 2024. "Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Libao Gao & Xiaojun Yuan & Wenju Cai & Guijun Guo & Weidong Yu & Jiuxin Shi & Fangli Qiao & Zexun Wei & Guy D. Williams, 2024. "Persistent warm-eddy transport to Antarctic ice shelves driven by enhanced summer westerlies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43499-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.