IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20781-1.html
   My bibliography  Save this article

Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability

Author

Listed:
  • Matthis Auger

    (Sorbonne Université, CNRS, LOCEAN
    CNES)

  • Rosemary Morrow

    (LEGOS, CNRS/IRD/CNES/University of Toulouse III)

  • Elodie Kestenare

    (LEGOS, CNRS/IRD/CNES/University of Toulouse III)

  • Jean-Baptiste Sallée

    (Sorbonne Université, CNRS, LOCEAN)

  • Rebecca Cowley

    (CSIRO Marine and Atmospheric Research)

Abstract

Despite playing a major role in global ocean heat storage, the Southern Ocean remains the most sparsely measured region of the global ocean. Here, a unique 25-year temperature time-series of the upper 800 m, repeated several times a year across the Southern Ocean, allows us to document the long-term change within water-masses and how it compares to the interannual variability. Three regions stand out as having strong trends that dominate over interannual variability: warming of the subantarctic waters (0.29 ± 0.09 °C per decade); cooling of the near-surface subpolar waters (−0.07 ± 0.04 °C per decade); and warming of the subsurface subpolar deep waters (0.04 ± 0.01 °C per decade). Although this subsurface warming of subpolar deep waters is small, it is the most robust long-term trend of our section, being in a region with weak interannual variability. This robust warming is associated with a large shoaling of the maximum temperature core in the subpolar deep water (39 ± 09 m per decade), which has been significantly underestimated by a factor of 3 to 10 in past studies. We find temperature changes of comparable magnitude to those reported in Amundsen–Bellingshausen Seas, which calls for a reconsideration of current ocean changes with important consequences for our understanding of future Antarctic ice-sheet mass loss.

Suggested Citation

  • Matthis Auger & Rosemary Morrow & Elodie Kestenare & Jean-Baptiste Sallée & Rebecca Cowley, 2021. "Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20781-1
    DOI: 10.1038/s41467-020-20781-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20781-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20781-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pearse J. Buchanan & Olivier Aumont & Laurent Bopp & Claire Mahaffey & Alessandro Tagliabue, 2021. "Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Manuel O. Gutierrez-Villanueva & Teresa K. Chereskin & Janet Sprintall, 2023. "Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Lu, Yifan & Yamazaki, Satoshi, 2023. "Antarctic Sanctuary: Behavioural Impact of International Marine Protected Areas," 2023 Annual Meeting, July 23-25, Washington D.C. 335483, Agricultural and Applied Economics Association.
    5. Camille Hayatte Akhoudas & Jean-Baptiste Sallée & Gilles Reverdin & F. Alexander Haumann & Etienne Pauthenet & Christopher C. Chapman & Félix Margirier & Claire Lo Monaco & Nicolas Metzl & Julie Meill, 2023. "Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20781-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.