IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42794-2.html
   My bibliography  Save this article

Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy

Author

Listed:
  • Mengqiu Xu

    (Hangzhou Normal University)

  • Fangfang Wu

    (Zhejiang University of Technology)

  • Ye Zhang

    (Hangzhou Normal University)

  • Yuanhui Yao

    (Hangzhou Normal University)

  • Genping Zhu

    (Hangzhou Normal University)

  • Xiaoyu Li

    (Hangzhou Normal University)

  • Liang Chen

    (Hangzhou Normal University)

  • Gan Jia

    (Hangzhou Normal University)

  • Xiaohong Wu

    (Harbin Institute of Technology)

  • Youju Huang

    (Hangzhou Normal University)

  • Peng Gao

    (Hangzhou Normal University)

  • Wei Ye

    (Hangzhou Normal University)

Abstract

Chemical C–N coupling from CO2 and NO3–, driven by renewable electricity, toward urea synthesis is an appealing alternative for Bosch–Meiser urea production. However, the unmatched kinetics in CO2 and NO3– reduction reactions and the complexity of C- and N-species involved in the co-reduction render the challenge of C–N coupling, leading to the low urea yield rate and Faradaic efficiency. Here, we report a single-atom copper-alloyed Pd catalyst (Pd4Cu1) that can achieve highly efficient C–N coupling toward urea electrosynthesis. The reduction kinetics of CO2 and NO3– is regulated and matched by steering Cu doping level and Pd4Cu1/FeNi(OH)2 interface. Charge-polarized Pdδ–-Cuδ+ dual-sites stabilize the key *CO and *NH2 intermediates to promote C–N coupling. The synthesized Pd4Cu1-FeNi(OH)2 composite catalyst achieves a urea yield rate of 436.9 mmol gcat.–1 h–1 and Faradaic efficiency of 66.4%, as well as a long cycling stability of 1000 h. In-situ spectroscopic results and theoretical calculation reveal that atomically dispersed Cu in Pd lattice promotes the deep reduction of NO3– to *NH2, and the Pd-Cu dual-sites lower the energy barrier of the pivotal C–N coupling between *NH2 and *CO.

Suggested Citation

  • Mengqiu Xu & Fangfang Wu & Ye Zhang & Yuanhui Yao & Genping Zhu & Xiaoyu Li & Liang Chen & Gan Jia & Xiaohong Wu & Youju Huang & Peng Gao & Wei Ye, 2023. "Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42794-2
    DOI: 10.1038/s41467-023-42794-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42794-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42794-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chade Lv & Lixiang Zhong & Hengjie Liu & Zhiwei Fang & Chunshuang Yan & Mengxin Chen & Yi Kong & Carmen Lee & Daobin Liu & Shuzhou Li & Jiawei Liu & Li Song & Gang Chen & Qingyu Yan & Guihua Yu, 2021. "Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide," Nature Sustainability, Nature, vol. 4(10), pages 868-876, October.
    2. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Bharath, G. & Karthikeyan, G. & Kumar, Anuj & Prakash, J. & Venkatasubbu, Devanand & Kumar Nadda, Ashok & Kumar Gupta, Vijai & Abu Haija, Mohammad & Banat, Fawzi, 2022. "Surface engineering of Au nanostructures for plasmon-enhanced electrochemical reduction of N2 and CO2 into urea in the visible-NIR region," Applied Energy, Elsevier, vol. 318(C).
    5. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Yang Li & Shisheng Zheng & Hao Liu & Qi Xiong & Haocong Yi & Haibin Yang & Zongwei Mei & Qinghe Zhao & Zu-Wei Yin & Ming Huang & Yuan Lin & Weihong Lai & Shi-Xue Dou & Feng Pan & Shunning Li, 2024. "Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42794-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.