IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42654-z.html
   My bibliography  Save this article

Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species

Author

Listed:
  • Xianliang Zhang

    (Hebei Agricultural University
    Peking University)

  • Tim Rademacher

    (Université du Québec en Outaouais
    Centre ACER
    Harvard University)

  • Hongyan Liu

    (Peking University)

  • Lu Wang

    (Peking University)

  • Rubén D. Manzanedo

    (D-USYS, ETH-Zürich)

Abstract

Warming-induced droughts caused tree growth loss across the globe, leading to substantial carbon loss to the atmosphere. Drought-induced growth loss, however, can be regulated by changes in diurnal temperature ranges. Here, we investigated long term radial growth responses of 23 widespread distributed tree species from 2327 sites over the world and found that species’ drought tolerances were significantly and positively correlated with diurnal temperature range-growth loss relationships for the period 1901-1940. Since 1940, this relationship has continued to fade, likely due to asymmetric day and night warming trends and the species’ ability to deal with them. The alleviation of reduced diurnal temperature ranges on drought-induced growth loss was mainly found for drought resistant tree species. Overall, our results highlight the need to carefully consider diurnal temperature ranges and species-specific responses to daytime and nighttime warming to explore tree growth responses to current and future warmer and drier climates.

Suggested Citation

  • Xianliang Zhang & Tim Rademacher & Hongyan Liu & Lu Wang & Rubén D. Manzanedo, 2023. "Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42654-z
    DOI: 10.1038/s41467-023-42654-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42654-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42654-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsun Fung Au & Justin T. Maxwell & Scott M. Robeson & Jinbao Li & Sacha M. O. Siani & Kimberly A. Novick & Matthew P. Dannenberg & Richard P. Phillips & Teng Li & Zhenju Chen & Jonathan Lenoir, 2022. "Younger trees in the upper canopy are more sensitive but also more resilient to drought," Nature Climate Change, Nature, vol. 12(12), pages 1168-1174, December.
    2. Brendan Choat & Timothy J. Brodribb & Craig R. Brodersen & Remko A. Duursma & Rosana López & Belinda E. Medlyn, 2018. "Triggers of tree mortality under drought," Nature, Nature, vol. 558(7711), pages 531-539, June.
    3. Chaoyang Wu & Xiaoyue Wang & Huanjiong Wang & Philippe Ciais & Josep Peñuelas & Ranga B. Myneni & Ankur R. Desai & Christopher M. Gough & Alemu Gonsamo & Andrew T. Black & Rachhpal S. Jassal & Weimin , 2018. "Contrasting responses of autumn-leaf senescence to daytime and night-time warming," Nature Climate Change, Nature, vol. 8(12), pages 1092-1096, December.
    4. Stefan Klesse & R. Justin DeRose & Christopher H. Guiterman & Ann M. Lynch & Christopher D. O’Connor & John D. Shaw & Margaret E. K. Evans, 2018. "Sampling bias overestimates climate change impacts on forest growth in the southwestern United States," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Brendan Choat & Steven Jansen & Tim J. Brodribb & Hervé Cochard & Sylvain Delzon & Radika Bhaskar & Sandra J. Bucci & Taylor S. Feild & Sean M. Gleason & Uwe G. Hacke & Anna L. Jacobsen & Frederic Len, 2012. "Global convergence in the vulnerability of forests to drought," Nature, Nature, vol. 491(7426), pages 752-755, November.
    6. Cameron Dow & Albert Y. Kim & Loïc D’Orangeville & Erika B. Gonzalez-Akre & Ryan Helcoski & Valentine Herrmann & Grant L. Harley & Justin T. Maxwell & Ian R. McGregor & William J. McShea & Sean M. McM, 2022. "Warm springs alter timing but not total growth of temperate deciduous trees," Nature, Nature, vol. 608(7923), pages 552-557, August.
    7. Xiubao Sun & Chunzai Wang & Guoyu Ren, 2021. "Changes in the diurnal temperature range over East Asia from 1901 to 2018 and its relationship with precipitation," Climatic Change, Springer, vol. 166(3), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    5. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    6. Krishna, Dyvavani K. & Watham, Taibanganba & Padalia, Hitendra & Srinet, Ritika & Nandy, Subrata, 2023. "Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest," Ecological Modelling, Elsevier, vol. 475(C).
    7. Rada Matić & Srđan Stamenković & Zorica Popović & Milena Stefanović & Vera Vidaković & Miroslava Smiljanić & Srđan Bojović, 2015. "Tree responses, tolerance and acclimation to stress: Does current research depend on the cultivation status of studied species?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1209-1222, November.
    8. Donna L. Fitzgerald & Stefan Peters & Gregory R. Guerin & Andrew McGrath & Gunnar Keppel, 2023. "Quantifying Dieback in a Vulnerable Population of Eucalyptus macrorhyncha Using Remote Sensing," Land, MDPI, vol. 12(7), pages 1-19, June.
    9. Wenqing Li & Rubén D. Manzanedo & Yuan Jiang & Wenqiu Ma & Enzai Du & Shoudong Zhao & Tim Rademacher & Manyu Dong & Hui Xu & Xinyu Kang & Jun Wang & Fang Wu & Xuefeng Cui & Neil Pederson, 2023. "Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jing Zhang & Xiaoan Zuo & Peng Lv, 2023. "Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    11. Wenzel Kröber & Shouren Zhang & Merten Ehmig & Helge Bruelheide, 2014. "Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-24, November.
    12. Margot Neyret & Gaëtane Provost & Andrea Larissa Boesing & Florian D. Schneider & Dennis Baulechner & Joana Bergmann & Franciska T. Vries & Anna Maria Fiore-Donno & Stefan Geisen & Kezia Goldmann & An, 2024. "A slow-fast trait continuum at the whole community level in relation to land-use intensification," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    13. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Danju Lv & Jiali Zi & Xin Huang & Mingyuan Gao & Rui Xi & Wei Li & Ziqian Wang, 2022. "Feature Extraction on the Difference of Plant Stem Structure Based on Ultrasound Energy," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    15. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    16. Mengyuan Zhang & Shuaipeng Chen & Wenping Liu, 2023. "Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss," Land, MDPI, vol. 12(7), pages 1-18, June.
    17. Silius M. Vandeskog & Thordis L. Thorarinsdottir & Ingelin Steinsland & Finn Lindgren, 2022. "Quantile based modeling of diurnal temperature range with the five‐parameter lambda distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    18. Lwando Royimani & Onisimo Mutanga & John Odindi & Rob Slotow, 2023. "Multi-Temporal Assessment of Remotely Sensed Autumn Grass Senescence across Climatic and Topographic Gradients," Land, MDPI, vol. 12(1), pages 1-14, January.
    19. Holtmann, Anne & Huth, Andreas & Bohn, Friedrich & Fischer, Rico, 2024. "Assessing the impact of multi-year droughts on German forests in the context of increased tree mortality," Ecological Modelling, Elsevier, vol. 492(C).
    20. Justin T. Maxwell & Grant L. Harley & Scott M. Robeson, 2016. "On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal," Climatic Change, Springer, vol. 138(1), pages 127-142, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42654-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.