IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41125-9.html
   My bibliography  Save this article

Beta traveling waves in monkey frontal and parietal areas encode recent reward history

Author

Listed:
  • Erfan Zabeh

    (Columbia University
    Columbia University)

  • Nicholas C. Foley

    (Columbia University)

  • Joshua Jacobs

    (Columbia University
    Columbia University)

  • Jacqueline P. Gottlieb

    (Columbia University
    Columbia University
    Columbia University)

Abstract

Brain function depends on neural communication, but the mechanisms of this communication are not well understood. Recent studies suggest that one form of neural communication is through traveling waves (TWs)—patterns of neural oscillations that propagate within and between brain areas. We show that TWs are robust in microarray recordings in frontal and parietal cortex and encode recent reward history. Two adult male monkeys made saccades to obtain probabilistic rewards and were sensitive to the (statistically irrelevant) reward on the previous trial. TWs in frontal and parietal areas were stronger in trials that followed a prior reward versus a lack of reward and, in the frontal lobe, correlated with the monkeys’ behavioral sensitivity to the prior reward. The findings suggest that neural communication mediated by TWs within the frontal and parietal lobes contribute to maintaining information about recent reward history and mediating the impact of this history on the monkeys’ expectations.

Suggested Citation

  • Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41125-9
    DOI: 10.1038/s41467-023-41125-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41125-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41125-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zachary W. Davis & Lyle Muller & Julio Martinez-Trujillo & Terrence Sejnowski & John H. Reynolds, 2020. "Spontaneous travelling cortical waves gate perception in behaving primates," Nature, Nature, vol. 587(7834), pages 432-436, November.
    2. Evgueniy V. Lubenov & Athanassios G. Siapas, 2009. "Hippocampal theta oscillations are travelling waves," Nature, Nature, vol. 459(7246), pages 534-539, May.
    3. Athena Akrami & Charles D. Kopec & Mathew E. Diamond & Carlos D. Brody, 2018. "Posterior parietal cortex represents sensory history and mediates its effects on behaviour," Nature, Nature, vol. 554(7692), pages 368-372, February.
    4. Jonathan K. Kleen & Jason E. Chung & Kristin K. Sellers & Jenny Zhou & Michael Triplett & Kye Lee & Angela Tooker & Razi Haque & Edward F. Chang, 2021. "Bidirectional propagation of low frequency oscillations over the human hippocampal surface," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Kazutaka Takahashi & Sanggyun Kim & Todd P. Coleman & Kevin A. Brown & Aaron J. Suminski & Matthew D. Best & Nicholas G. Hatsopoulos, 2015. "Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    6. Pieter R. Roelfsema & Andreas K. Engel & Peter König & Wolf Singer, 1997. "Visuomotor integration is associated with zero time-lag synchronization among cortical areas," Nature, Nature, vol. 385(6612), pages 157-161, January.
    7. Charles W. Dickey & Anna Sargsyan & Joseph R. Madsen & Emad N. Eskandar & Sydney S. Cash & Eric Halgren, 2021. "Travelling spindles create necessary conditions for spike-timing-dependent plasticity in humans," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Daria Osipova & Dora Hermes & Ole Jensen, 2008. "Gamma Power Is Phase-Locked to Posterior Alpha Activity," PLOS ONE, Public Library of Science, vol. 3(12), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel B. Benigno & Roberto C. Budzinski & Zachary W. Davis & John H. Reynolds & Lyle Muller, 2023. "Waves traveling over a map of visual space can ignite short-term predictions of sensory input," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Laura R González-Ramírez & Omar J Ahmed & Sydney S Cash & C Eugene Wayne & Mark A Kramer, 2015. "A Biologically Constrained, Mathematical Model of Cortical Wave Propagation Preceding Seizure Termination," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-34, February.
    3. Dominik P. Koller & Michael Schirner & Petra Ritter, 2024. "Human connectome topology directs cortical traveling waves and shapes frequency gradients," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Diksha Gupta & Brian DePasquale & Charles D. Kopec & Carlos D. Brody, 2024. "Trial-history biases in evidence accumulation can give rise to apparent lapses in decision-making," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Luca Ambrogioni & Marcel A J van Gerven & Eric Maris, 2017. "Dynamic decomposition of spatiotemporal neural signals," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-37, May.
    6. Patrick Jendritza & Frederike J. Klein & Pascal Fries, 2023. "Multi-area recordings and optogenetics in the awake, behaving marmoset," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Sebastian Reinartz & Arash Fassihi & Maria Ravera & Luciano Paz & Francesca Pulecchi & Marco Gigante & Mathew E. Diamond, 2024. "Direct contribution of the sensory cortex to the judgment of stimulus duration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. I. Hachen & S. Reinartz & R. Brasselet & A. Stroligo & M. E. Diamond, 2021. "Dynamics of history-dependent perceptual judgment," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    10. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    12. Melisa Menceloglu & Marcia Grabowecky & Satoru Suzuki, 2020. "EEG state-trajectory instability and speed reveal global rules of intrinsic spatiotemporal neural dynamics," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-30, August.
    13. Mario Treviño & Santiago Castiello & Oscar Arias-Carrión & Braniff De la Torre-Valdovinos & Ricardo Medina Coss y León, 2021. "Isomorphic decisional biases across perceptual tasks," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-18, January.
    14. Mojtaba Chehelcheraghi & Cees van Leeuwen & Erik Steur & Chie Nakatani, 2017. "A neural mass model of cross frequency coupling," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    15. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Boaretto, Bruno R.R. & Budzinski, Roberto C. & Rossi, Kalel L. & Masoller, Cristina & Macau, Elbert E.N., 2023. "Spatial permutation entropy distinguishes resting brain states," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    18. Xunda Wang & Alex T. L. Leong & Shawn Z. K. Tan & Eddie C. Wong & Yilong Liu & Lee-Wei Lim & Ed X. Wu, 2023. "Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Samuel López-Yépez Junior & Juliane Martin & Oliver Hulme & Duda Kvitsiani, 2021. "Choice history effects in mice and humans improve reward harvesting efficiency," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-33, October.
    20. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41125-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.