IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003990.html
   My bibliography  Save this article

Gamma Power Is Phase-Locked to Posterior Alpha Activity

Author

Listed:
  • Daria Osipova
  • Dora Hermes
  • Ole Jensen

Abstract

Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability.

Suggested Citation

  • Daria Osipova & Dora Hermes & Ole Jensen, 2008. "Gamma Power Is Phase-Locked to Posterior Alpha Activity," PLOS ONE, Public Library of Science, vol. 3(12), pages 1-7, December.
  • Handle: RePEc:plo:pone00:0003990
    DOI: 10.1371/journal.pone.0003990
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003990
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003990&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktor Müller & Ulman Lindenberger, 2014. "Hyper-Brain Networks Support Romantic Kissing in Humans," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-19, November.
    2. Mojtaba Chehelcheraghi & Cees van Leeuwen & Erik Steur & Chie Nakatani, 2017. "A neural mass model of cross frequency coupling," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    3. Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Melisa Menceloglu & Marcia Grabowecky & Satoru Suzuki, 2020. "EEG state-trajectory instability and speed reveal global rules of intrinsic spatiotemporal neural dynamics," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-30, August.
    5. Jérôme Van Zaen & Micah M Murray & Reto A Meuli & Jean-Marc Vesin, 2013. "Adaptive Filtering Methods for Identifying Cross-Frequency Couplings in Human EEG," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-13, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.