IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40922-6.html
   My bibliography  Save this article

Over 200,000 kilometers of free-flowing river habitat in Europe is altered due to impoundments

Author

Listed:
  • Piotr Parasiewicz

    (National Inland Fisheries Research Institute)

  • Kamila Belka

    (National Inland Fisheries Research Institute
    European Regional Centre for Ecohydrology of the Polish Academy of Sciences)

  • Małgorzata Łapińska

    (European Regional Centre for Ecohydrology of the Polish Academy of Sciences
    University of Lodz)

  • Karol Ławniczak

    (European Regional Centre for Ecohydrology of the Polish Academy of Sciences
    University of Lodz)

  • Paweł Prus

    (National Inland Fisheries Research Institute)

  • Mikołaj Adamczyk

    (National Inland Fisheries Research Institute)

  • Paweł Buras

    (National Inland Fisheries Research Institute)

  • Jacek Szlakowski

    (National Inland Fisheries Research Institute)

  • Zbigniew Kaczkowski

    (European Regional Centre for Ecohydrology of the Polish Academy of Sciences
    University of Lodz)

  • Kinga Krauze

    (European Regional Centre for Ecohydrology of the Polish Academy of Sciences)

  • Joanna O’Keeffe

    (National Inland Fisheries Research Institute)

  • Katarzyna Suska

    (National Inland Fisheries Research Institute)

  • Janusz Ligięza

    (National Inland Fisheries Research Institute)

  • Andreas Melcher

    (University of Natural Resources and Life Sciences)

  • Jesse O’Hanley

    (University of Kent)

  • Kim Birnie-Gauvin

    (Technical University of Denmark)

  • Kim Aarestrup

    (Technical University of Denmark)

  • Peter E. Jones

    (Swansea University)

  • Joshua Jones

    (Swansea University)

  • Carlos Garcia de Leaniz

    (Swansea University)

  • Jeroen S. Tummers

    (Durham University
    RAVON)

  • Sofia Consuegra

    (Swansea University)

  • Paul Kemp

    (University of Southampton)

  • Hannah Schwedhelm

    (Technical University of Munich)

  • Zbigniew Popek

    (Warsaw University of Life Sciences)

  • Gilles Segura

    (IS Environnement)

  • Sergio Vallesi

    (Durham University
    Hydronexus)

  • Maciej Zalewski

    (European Regional Centre for Ecohydrology of the Polish Academy of Sciences)

  • Wiesław Wiśniewolski

    (National Inland Fisheries Research Institute)

Abstract

European rivers are disconnected by more than one million man-made barriers that physically limit aquatic species migration and contribute to modification of freshwater habitats. Here, a Conceptual Habitat Alteration Model for Ponding is developed to aid in evaluating the effects of impoundments on fish habitats. Fish communities present in rivers with low human impact and their broad environmental settings enable classification of European rivers into 15 macrohabitat types. These classifications, together with the estimated fish sensitivity to alteration of their habitat are used for assessing the impacts of six main barrier types (dams, weirs, sluices, culverts, fords, and ramps). Our results indicate that over 200,000 km or 10% of previously free-flowing river habitat has been altered due to impoundments. Although they appear less frequently, dams, weirs and sluices cause much more habitat alteration than the other types. Their impact is regionally diverse, which is a function of barrier height, type and density, as well as biogeographical location. This work allows us to foresee what potential environmental gain or loss can be expected with planned barrier management actions in rivers, and to prioritize management actions.

Suggested Citation

  • Piotr Parasiewicz & Kamila Belka & Małgorzata Łapińska & Karol Ławniczak & Paweł Prus & Mikołaj Adamczyk & Paweł Buras & Jacek Szlakowski & Zbigniew Kaczkowski & Kinga Krauze & Joanna O’Keeffe & Katar, 2023. "Over 200,000 kilometers of free-flowing river habitat in Europe is altered due to impoundments," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40922-6
    DOI: 10.1038/s41467-023-40922-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40922-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40922-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara Belletti & Carlos Garcia de Leaniz & Joshua Jones & Simone Bizzi & Luca Börger & Gilles Segura & Andrea Castelletti & Wouter van de Bund & Kim Aarestrup & James Barry & Kamila Belka & Arjan Be, 2020. "More than one million barriers fragment Europe’s rivers," Nature, Nature, vol. 588(7838), pages 436-441, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Łukasz Sługocki & Robert Czerniawski, 2023. "Water Quality of the Odra (Oder) River before and during the Ecological Disaster in 2022: A Warning to Water Management," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    3. Dawid Szatten & Michał Habel & Zygmunt Babiński, 2021. "Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland)," Resources, MDPI, vol. 10(7), pages 1-22, July.
    4. Jose M. Gonzalez & James E. Tomlinson & Eduardo A. Martínez Ceseña & Mohammed Basheer & Emmanuel Obuobie & Philip T. Padi & Salifu Addo & Rasheed Baisie & Mikiyas Etichia & Anthony Hurford & Andrea Bo, 2023. "Designing diversified renewable energy systems to balance multisector performance," Nature Sustainability, Nature, vol. 6(4), pages 415-427, April.
    5. Kerr, J.R. & Tummers, J.S. & Benson, T. & Lucas, M.C. & Kemp, P.S., 2023. "Modelling fine scale route choice of upstream migrating fish as they approach an instream structure," Ecological Modelling, Elsevier, vol. 478(C).
    6. Isabella Georgiou & Serena Caucci & Jonathan Clive Morris & Edeltraud Guenther & Peter Krebs, 2023. "Assessing the Potential of Water Reuse Uptake Through a Private–Public Partnership: a Practitioner’s Perspective," Circular Economy and Sustainability,, Springer.
    7. Novak, Gorazd & Pengal, Polona & Silva, Ana T. & Domínguez, José M. & Tafuni, Angelo & Četina, Matjaž & Žagar, Dušan, 2023. "Interdisciplinary design of a fish ramp using migration routes analysis," Ecological Modelling, Elsevier, vol. 475(C).
    8. Rachel A. Spinti & Laura E. Condon & Jun Zhang, 2023. "The evolution of dam induced river fragmentation in the United States," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Jing Liu & Chao Zang & Qiting Zuo & Chunhui Han & Stefan Krause, 2023. "Application and Comparison of Different Models for Quantifying the Aquatic Community in a Dam-Controlled River," IJERPH, MDPI, vol. 20(5), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40922-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.