Author
Listed:
- Liang, Enhang
- Tang, Hongjie
- Liu, Yiming
- Liu, Shufeng
- Wu, Jiang
- Pan, Wenbin
- Shang, Yunyi
- Yin, Shihua
Abstract
Hydropower is an integral component in the global transition to decarbonized energy systems. However, the construction of hydropower dam leads to a range of adverse socio-environmental consequences as a result of reservoir flooding. Here, we provide a global synthesis that quantifies key impacts associated with future hydropower development and examines how strategic hydropower planning can mitigate these adverse effects, including aboveground biomass loss, terrestrial biodiversity impact, greenhouse gas emission, evaporation loss, and human displacement. Our findings indicate that the prospective dams in tropical regions contribute the majority (72–82 %) of environmental impacts worldwide, while dam-induced displacement predominantly (64 %) occurs in the northern temperate zone. 52–99 % of the variations in these impacts could be explained by the hydropower capacity per unit of reservoir area (power density), suggesting that systematic planning that prioritizes higher power densities could significantly mitigate negative socio-environmental externalities. Basin-wide hydropower planning could reduce 83–89 % of avoidable socio-environmental costs compared with uncoordinated hydropower expansion. Large rivers in tropical Africa and southeastern Asia show the greatest potential for impact mitigation through strategic hydropower planning, where optimized dam portfolios could reduce adverse effects by more than 90 % compared to suboptimal dam portfolios. By integrating watershed, river network, and dam characteristics, we propose a hierarchical framework that disaggregates the primary drivers of dam impacts across multiple spatial scales. This framework provides practical guidelines for strategic dam siting and facilitates a win-win outcome by meeting energy demands while minimizing the impacts on surrounding ecosystems and local communities.
Suggested Citation
Liang, Enhang & Tang, Hongjie & Liu, Yiming & Liu, Shufeng & Wu, Jiang & Pan, Wenbin & Shang, Yunyi & Yin, Shihua, 2025.
"A global synthesis reveals the role of strategic hydropower planning in mitigating adverse impacts of reservoir flooding,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 217(C).
Handle:
RePEc:eee:rensus:v:217:y:2025:i:c:s136403212500396x
DOI: 10.1016/j.rser.2025.115723
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:217:y:2025:i:c:s136403212500396x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.