IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40352-4.html
   My bibliography  Save this article

Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis

Author

Listed:
  • Donglin Ding

    (Mayo Clinic College of Medicine and Science)

  • Alexandra M. Blee

    (Mayo Clinic College of Medicine and Science
    Vanderbilt University)

  • Jianong Zhang

    (Mayo Clinic College of Medicine and Science)

  • Yunqian Pan

    (Mayo Clinic College of Medicine and Science)

  • Nicole A. Becker

    (Mayo Clinic College of Medicine and Science)

  • L. James Maher

    (Mayo Clinic College of Medicine and Science)

  • Rafael Jimenez

    (Mayo Clinic College of Medicine and Science)

  • Liguo Wang

    (Mayo Clinic College of Medicine and Science)

  • Haojie Huang

    (Mayo Clinic College of Medicine and Science
    Mayo Clinic College of Medicine and Science
    Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science)

Abstract

Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.

Suggested Citation

  • Donglin Ding & Alexandra M. Blee & Jianong Zhang & Yunqian Pan & Nicole A. Becker & L. James Maher & Rafael Jimenez & Liguo Wang & Haojie Huang, 2023. "Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40352-4
    DOI: 10.1038/s41467-023-40352-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40352-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40352-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donglin Ding & Rongbin Zheng & Ye Tian & Rafael Jimenez & Xiaonan Hou & Saravut J. Weroha & Liguo Wang & Lei Shi & Haojie Huang, 2022. "Retinoblastoma protein as an intrinsic BRD4 inhibitor modulates small molecule BET inhibitor sensitivity in cancer," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Michael S. Lawrence & Petar Stojanov & Craig H. Mermel & James T. Robinson & Levi A. Garraway & Todd R. Golub & Matthew Meyerson & Stacey B. Gabriel & Eric S. Lander & Gad Getz, 2014. "Discovery and saturation analysis of cancer genes across 21 tumour types," Nature, Nature, vol. 505(7484), pages 495-501, January.
    3. Shiran Rabinovich & Lital Adler & Keren Yizhak & Alona Sarver & Alon Silberman & Shani Agron & Noa Stettner & Qin Sun & Alexander Brandis & Daniel Helbling & Stanley Korman & Shalev Itzkovitz & David , 2015. "Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis," Nature, Nature, vol. 527(7578), pages 379-383, November.
    4. Madhusudhan Kollareddy & Elizabeth Dimitrova & Krishna C. Vallabhaneni & Adriano Chan & Thuc Le & Krishna M. Chauhan & Zunamys I. Carrero & Gopalakrishnan Ramakrishnan & Kounosuke Watabe & Ygal Haupt , 2015. "Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    5. Jiajun Zhu & Morgan A. Sammons & Greg Donahue & Zhixun Dou & Masoud Vedadi & Matthäus Getlik & Dalia Barsyte-Lovejoy & Rima Al-awar & Bryson W. Katona & Ali Shilatifard & Jing Huang & Xianxin Hua & Ch, 2015. "Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth," Nature, Nature, vol. 525(7568), pages 206-211, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Verny & Nadir Sella & Séverine Affeldt & Param Priya Singh & Hervé Isambert, 2017. "Learning causal networks with latent variables from multivariate information in genomic data," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
    2. Qi Zhao & Feng Wang & Yan-Xing Chen & Shifu Chen & Yi-Chen Yao & Zhao-Lei Zeng & Teng-Jia Jiang & Ying-Nan Wang & Chen-Yi Wu & Ying Jing & You-Sheng Huang & Jing Zhang & Zi-Xian Wang & Ming-Ming He & , 2022. "Comprehensive profiling of 1015 patients’ exomes reveals genomic-clinical associations in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Camilla Tombari & Alessandro Zannini & Rebecca Bertolio & Silvia Pedretti & Matteo Audano & Luca Triboli & Valeria Cancila & Davide Vacca & Manuel Caputo & Sara Donzelli & Ilenia Segatto & Simone Vodr, 2023. "Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Yidong Zhou & Changjun Wang & Hanjiang Zhu & Yan Lin & Bo Pan & Xiaohui Zhang & Xin Huang & Qianqian Xu & Yali Xu & Qiang Sun, 2016. "Diagnostic Accuracy of PIK3CA Mutation Detection by Circulating Free DNA in Breast Cancer: A Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    5. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    8. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Zhe Jiang & YoungJun Ju & Amjad Ali & Philip E. D. Chung & Patryk Skowron & Dong-Yu Wang & Mariusz Shrestha & Huiqin Li & Jeff C. Liu & Ioulia Vorobieva & Ronak Ghanbari-Azarnier & Ethel Mwewa & Maria, 2023. "Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Yanling Liu & Jonathon Klein & Richa Bajpai & Li Dong & Quang Tran & Pandurang Kolekar & Jenny L. Smith & Rhonda E. Ries & Benjamin J. Huang & Yi-Cheng Wang & Todd A. Alonzo & Liqing Tian & Heather L., 2023. "Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Juan Li & Yang Wang & Yue Luo & Yang Liu & Yong Yi & Jinsong Li & Yang Pan & Weiyuxin Li & Wanbang You & Qingyong Hu & Zhiqiang Zhao & Yujun Zhang & Yang Cao & Lingqiang Zhang & Junying Yuan & Zhi-Xio, 2022. "USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Anna Bianchi-Smiraglia & David W. Wolff & Daniel J. Marston & Zhiyong Deng & Zhannan Han & Sudha Moparthy & Rebecca M. Wombacher & Ashley L. Mussell & Shichen Shen & Jialin Chen & Dong-Hyun Yun & Ande, 2021. "Regulation of local GTP availability controls RAC1 activity and cell invasion," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    13. Marjan M. Naeini & Felicity Newell & Lauren G. Aoude & Vanessa F. Bonazzi & Kalpana Patel & Guy Lampe & Lambros T. Koufariotis & Vanessa Lakis & Venkateswar Addala & Olga Kondrashova & Rebecca L. John, 2023. "Multi-omic features of oesophageal adenocarcinoma in patients treated with preoperative neoadjuvant therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Rotem Katzir & Noam Rudberg & Keren Yizhak, 2022. "Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Martin Boström & Erik Larsson, 2022. "Somatic mutation distribution across tumour cohorts provides a signal for positive selection in cancer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. An Xu & Mo Liu & Mo-Fan Huang & Yang Zhang & Ruifeng Hu & Julian A. Gingold & Ying Liu & Dandan Zhu & Chian-Shiu Chien & Wei-Chen Wang & Zian Liao & Fei Yuan & Chih-Wei Hsu & Jian Tu & Yao Yu & Taylor, 2023. "Rewired m6A epitranscriptomic networks link mutant p53 to neoplastic transformation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Meredith L. Jenkins & Harish Ranga-Prasad & Matthew A. H. Parson & Noah J. Harris & Manoj K. Rathinaswamy & John E. Burke, 2023. "Oncogenic mutations of PIK3CA lead to increased membrane recruitment driven by reorientation of the ABD, p85 and C-terminus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Sebastian Carrasco Pro & Heather Hook & David Bray & Daniel Berenzy & Devlin Moyer & Meimei Yin & Adam Thomas Labadorf & Ryan Tewhey & Trevor Siggers & Juan Ignacio Fuxman Bass, 2023. "Widespread perturbation of ETS factor binding sites in cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Mark Bustoros & Shankara Anand & Romanos Sklavenitis-Pistofidis & Robert Redd & Eileen M. Boyle & Benny Zhitomirsky & Andrew J. Dunford & Yu-Tzu Tai & Selina J. Chavda & Cody Boehner & Carl Jannes Neu, 2022. "Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Mu-Kuei Shieu & Hsin-Yu Ho & Shu-Hui Lin & Yu-Sheng Lo & Chia-Chieh Lin & Yi-Ching Chuang & Ming-Ju Hsieh & Mu-Kuan Chen, 2022. "Association of KMT2C Genetic Variants with the Clinicopathologic Development of Oral Cancer," IJERPH, MDPI, vol. 19(7), pages 1-10, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40352-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.