IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39534-x.html
   My bibliography  Save this article

Joint analysis of phenotype-effect-generation identifies loci associated with grain quality traits in rice hybrids

Author

Listed:
  • Lanzhi Li

    (Hunan Agricultural University)

  • Xingfei Zheng

    (Food Crop Institute, Hubei Academy of Agricultural Sciences
    Wuhan University)

  • Jiabo Wang

    (Southwest Minzu University)

  • Xueli Zhang

    (Hunan Agricultural University)

  • Xiaogang He

    (Hunan Agricultural University)

  • Liwen Xiong

    (Hunan Agricultural University)

  • Shufeng Song

    (Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences)

  • Jing Su

    (Hunan Agricultural University)

  • Ying Diao

    (Wuhan Polytechnic University)

  • Zheming Yuan

    (Hunan Agricultural University)

  • Zhiwu Zhang

    (Washington State University)

  • Zhongli Hu

    (Wuhan University
    Wuhan Polytechnic University)

Abstract

Genetic improvement of grain quality is more challenging in hybrid rice than in inbred rice due to additional nonadditive effects such as dominance. Here, we describe a pipeline developed for joint analysis of phenotypes, effects, and generations (JPEG). As a demonstration, we analyze 12 grain quality traits of 113 inbred lines (male parents), five tester lines (female parents), and 565 (113×5) of their hybrids. We sequence the parents for single nucleotide polymorphisms calling and infer the genotypes of the hybrids. Genome-wide association studies with JPEG identify 128 loci associated with at least one of the 12 traits, including 44, 97, and 13 loci with additive effects, dominant effects, and both additive and dominant effects, respectively. These loci together explain more than 30% of the genetic variation in hybrid performance for each of the traits. The JEPG statistical pipeline can help to identify superior crosses for breeding rice hybrids with improved grain quality.

Suggested Citation

  • Lanzhi Li & Xingfei Zheng & Jiabo Wang & Xueli Zhang & Xiaogang He & Liwen Xiong & Shufeng Song & Jing Su & Ying Diao & Zheming Yuan & Zhiwu Zhang & Zhongli Hu, 2023. "Joint analysis of phenotype-effect-generation identifies loci associated with grain quality traits in rice hybrids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39534-x
    DOI: 10.1038/s41467-023-39534-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39534-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39534-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dong-Sheng Zhao & Qian-Feng Li & Chang-Quan Zhang & Chen Zhang & Qing-Qing Yang & Li-Xu Pan & Xin-Yu Ren & Jun Lu & Ming-Hong Gu & Qiao-Quan Liu, 2018. "GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Xiaolei Liu & Meng Huang & Bin Fan & Edward S Buckler & Zhiwu Zhang, 2016. "Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 12(2), pages 1-24, February.
    3. Qian Liu & Ruixi Han & Kun Wu & Jianqing Zhang & Yafeng Ye & Shuansuo Wang & Jianfeng Chen & Yajun Pan & Qi Li & Xiaopeng Xu & Jiawu Zhou & Dayun Tao & Yuejin Wu & Xiangdong Fu, 2018. "G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Xuehui Huang & Shihua Yang & Junyi Gong & Yan Zhao & Qi Feng & Hao Gong & Wenjun Li & Qilin Zhan & Benyi Cheng & Junhui Xia & Neng Chen & Zhongna Hao & Kunyan Liu & Chuanrang Zhu & Tao Huang & Qiang Z, 2015. "Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    2. Yueya Zhang & Chaoqun Shen & Gang Li & Jin Shi & Yajing Yuan & Lingzhen Ye & Qingfeng Song & Jianxin Shi & Dabing Zhang, 2024. "MADS1-regulated lemma and awn development benefits barley yield," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Prabin Bajgain & James A. Anderson, 2021. "Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    4. Xubin Lu & Hui Jiang & Abdelaziz Adam Idriss Arbab & Bo Wang & Dingding Liu & Ismail Mohamed Abdalla & Tianle Xu & Yujia Sun & Zongping Liu & Zhangping Yang, 2023. "Investigating Genetic Characteristics of Chinese Holstein Cow’s Milk Somatic Cell Score by Genetic Parameter Estimation and Genome-Wide Association," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    5. Yuanjie Li & Sheng Wu & Yongyu Huang & Xin Ma & Lubin Tan & Fengxia Liu & Qiming Lv & Zuofeng Zhu & Meixia Hu & Yongcai Fu & Kun Zhang & Ping Gu & Daoxin Xie & Hongying Sun & Chuanqing Sun, 2023. "OsMADS17 simultaneously increases grain number and grain weight in rice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Alemayehu Teressa Negawo & Meki Shehabu Muktar & Ricardo Alonso Sánchez Gutiérrez & Ermias Habte & Alice Muchugi & Chris S. Jones, 2024. "A Genome-Wide Association Study of Biomass Yield and Feed Quality in Buffel Grass ( Cenchrus ciliaris L.)," Agriculture, MDPI, vol. 14(2), pages 1-27, February.
    7. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Zhanwei Zhuang & Shaoyun Li & Rongrong Ding & Ming Yang & Enqin Zheng & Huaqiang Yang & Ting Gu & Zheng Xu & Gengyuan Cai & Zhenfang Wu & Jie Yang, 2019. "Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    9. Gianola, Daniel & Fernando, Rohan L. & Schön, Chris-Carolin, 2020. "Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression," Theoretical Population Biology, Elsevier, vol. 132(C), pages 47-59.
    10. Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.
    11. Yue Xin & Lina Gao & Wenming Hu & Qi Gao & Bin Yang & Jianguo Zhou & Cuilian Xu, 2022. "Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    12. Uğur Sesiz, 2023. "Deciphering Genomic Regions and Putative Candidate Genes for Grain Size and Shape Traits in Durum Wheat through GWAS," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    13. Cox Lwaka Tamba & Yuan-Li Ni & Yuan-Ming Zhang, 2017. "Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    14. Girma Mengistu & Hussein Shimelis & Ermias Assefa & Dagnachew Lule, 2021. "Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench]," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-15, December.
    15. Luchang Ming & Debao Fu & Zhaona Wu & Hu Zhao & Xingbing Xu & Tingting Xu & Xiaohu Xiong & Mu Li & Yi Zheng & Ge Li & Ling Yang & Chunjiao Xia & Rongfang Zhou & Keyan Liao & Qian Yu & Wenqi Chai & Sij, 2023. "Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39534-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.