IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38181-6.html
   My bibliography  Save this article

Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins

Author

Listed:
  • Yifeng Liu

    (Zhejiang University)

  • Zhiqiang Liu

    (Chinese Academy of Sciences)

  • Yu Hui

    (Liaoning Shihua University)

  • Liang Wang

    (Zhejiang University)

  • Jian Zhang

    (Science and Engineering, Beijing University of Chemical Technology)

  • Xianfeng Yi

    (Chinese Academy of Sciences)

  • Wei Chen

    (Chinese Academy of Sciences)

  • Chengtao Wang

    (Zhejiang University)

  • Hai Wang

    (Zhejiang University)

  • Yucai Qin

    (Liaoning Shihua University)

  • Lijuan Song

    (Liaoning Shihua University)

  • Anmin Zheng

    (Chinese Academy of Sciences)

  • Feng-Shou Xiao

    (Zhejiang University
    Science and Engineering, Beijing University of Chemical Technology)

Abstract

Hydroformylation is one of the largest industrially homogeneous processes that strongly relies on catalysts with phosphine ligands such as the Wilkinson’s catalyst (triphenylphosphine coordinated Rh). Heterogeneous catalysts for olefin hydroformylation are highly desired but suffer from poor activity compared with homogeneous catalysts. Herein, we demonstrate that rhodium nanoparticles supported on siliceous MFI zeolite with abundant silanol nests are very active for hydroformylation, giving a turnover frequency as high as ~50,000 h−1 that even outperforms the classical Wilkinson’s catalyst. Mechanism study reveals that the siliceous zeolite with silanol nests could efficiently enrich olefin molecules to adjacent rhodium nanoparticles, enhancing the hydroformylation reaction.

Suggested Citation

  • Yifeng Liu & Zhiqiang Liu & Yu Hui & Liang Wang & Jian Zhang & Xianfeng Yi & Wei Chen & Chengtao Wang & Hai Wang & Yucai Qin & Lijuan Song & Anmin Zheng & Feng-Shou Xiao, 2023. "Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38181-6
    DOI: 10.1038/s41467-023-38181-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38181-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38181-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Insoo Ro & Ji Qi & Seungyeon Lee & Mingjie Xu & Xingxu Yan & Zhenhua Xie & Gregory Zakem & Austin Morales & Jingguang G. Chen & Xiaoqing Pan & Dionisios G. Vlachos & Stavros Caratzoulas & Phillip Chri, 2022. "Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts," Nature, Nature, vol. 609(7926), pages 287-292, September.
    2. Ke Dong & Qi Sun & Yongquan Tang & Chuan Shan & Briana Aguila & Sai Wang & Xiangju Meng & Shengqian Ma & Feng-Shou Xiao, 2019. "Bio-inspired creation of heterogeneous reaction vessels via polymerization of supramolecular ion pair," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Liangbing Wang & Wenbo Zhang & Shenpeng Wang & Zehua Gao & Zhiheng Luo & Xu Wang & Rui Zeng & Aowen Li & Hongliang Li & Menglin Wang & Xusheng Zheng & Junfa Zhu & Wenhua Zhang & Chao Ma & Rui Si & Jie, 2016. "Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    4. Peng Gao & Guanfeng Liang & Tong Ru & Xiaoyan Liu & Haifeng Qi & Aiqin Wang & Fen-Er Chen, 2021. "Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ryong Ryoo & Jaeheon Kim & Changbum Jo & Seung Won Han & Jeong-Chul Kim & Hongjun Park & Jongho Han & Hye Sun Shin & Jae Won Shin, 2020. "Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis," Nature, Nature, vol. 585(7824), pages 221-224, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjie Zhao & Chengeng Li & Daviel Gómez & Francisco Gonell & Vlad Martin Diaconescu & Laura Simonelli & Miguel Lopez Haro & Jose Juan Calvino & Debora Motta Meira & Patricia Concepción & Avelino Corm, 2023. "Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jie Yao & Yingluo He & Yan Zeng & Xiaobo Feng & Jiaqi Fan & Shoya Komiyama & Xiaojing Yong & Wei Zhang & Tiejian Zhao & Zhongshan Guo & Xiaobo Peng & Guohui Yang & Noritatsu Tsubaki, 2022. "Ammonia pools in zeolites for direct fabrication of catalytic centers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ji Yang & Lu Wang & Jiawei Wan & Farid El Gabaly & Andre L. Fernandes Cauduro & Bernice E. Mills & Jeng-Lung Chen & Liang-Ching Hsu & Daewon Lee & Xiao Zhao & Haimei Zheng & Miquel Salmeron & Caiqi Wa, 2024. "Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO2 to ethylene and CO," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Shuang Liu & Yong Li & Xiaojuan Yu & Shaobo Han & Yan Zhou & Yuqi Yang & Hao Zhang & Zheng Jiang & Chuwei Zhu & Wei-Xue Li & Christof Wöll & Yuemin Wang & Wenjie Shen, 2022. "Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Kang Zhao & Hongli Wang & Teng Li & Shujuan Liu & Enrico Benassi & Xiao Li & Yao Yao & Xiaojun Wang & Xinjiang Cui & Feng Shi, 2024. "Identification of a potent palladium-aryldiphosphine catalytic system for high-performance carbonylation of alkenes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yuzhu Ma & Hongjin Zhang & Runfeng Lin & Yan Ai & Kun Lan & Linlin Duan & Wenyao Chen & Xuezhi Duan & Bing Ma & Changyao Wang & Xiaomin Li & Dongyuan Zhao, 2022. "Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38181-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.