IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59376-z.html
   My bibliography  Save this article

Suppressing COx in oxidative dehydrogenation of propane with dual-atom catalysts

Author

Listed:
  • Yongbin Yao

    (Beijing Jiaotong University
    Chemistry and Chemical Engineering Guangdong Laboratory)

  • Jingnan Wang

    (Fuzhou University)

  • Fei Lu

    (Yangzhou University)

  • Wenlin Li

    (Taiyuan University of Technology)

  • Bingbao Mei

    (Chinese Academy of Sciences)

  • Lifeng Zhang

    (Fuzhou University)

  • Wensheng Yan

    (University of Science and Technology of China)

  • Fangli Yuan

    (Chinese Academy of Sciences)

  • Guiyuan Jiang

    (China University of Petroleum)

  • Sanjaya D. Senanayake

    (Brookhaven National Laboratory)

  • Xi Wang

    (Beijing Jiaotong University
    Chemistry and Chemical Engineering Guangdong Laboratory)

Abstract

Oxidative dehydrogenation of propane (ODHP) is a promising route for propylene production, but achieving high selectivity towards propylene while minimizing COx byproducts remains a significant challenge for conventional metal oxide catalysts. Here we propose a solution to this challenge by employing atomically dispersed dual-atom catalysts (M1M'1-TiO2 DACs). Ni1Fe1-TiO2 DACs exhibit an ultralow COx selectivity of 5.2% at a high propane conversion of 46.1% and 520 °C, with stable performance for over 1000 hours. Mechanistic investigations reveal that these catalysts operate via a cooperative Langmuir-Hinshelwood mechanism, distinct from the Mars-van Krevelen mechanism typical of metal oxides. This cooperative pathway facilitates efficient conversion of propane and oxygen into propylene at the dual-atom interface. The superior selectivity arises from facile olefin desorption from the dual-atom sites and suppressed formation of electrophilic oxygen species, which are preferentially adsorbed on Fe1 sites rather than oxygen vacancies. This work highlights the potential of dual-atom catalysts for highly selective ODHP and provides insights into their unique catalytic mechanism.

Suggested Citation

  • Yongbin Yao & Jingnan Wang & Fei Lu & Wenlin Li & Bingbao Mei & Lifeng Zhang & Wensheng Yan & Fangli Yuan & Guiyuan Jiang & Sanjaya D. Senanayake & Xi Wang, 2025. "Suppressing COx in oxidative dehydrogenation of propane with dual-atom catalysts," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59376-z
    DOI: 10.1038/s41467-025-59376-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59376-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59376-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yufan Liang & Xiaheng Zhang & David W. C. MacMillan, 2018. "Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis," Nature, Nature, vol. 559(7712), pages 83-88, July.
    2. Insoo Ro & Ji Qi & Seungyeon Lee & Mingjie Xu & Xingxu Yan & Zhenhua Xie & Gregory Zakem & Austin Morales & Jingguang G. Chen & Xiaoqing Pan & Dionisios G. Vlachos & Stavros Caratzoulas & Phillip Chri, 2022. "Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts," Nature, Nature, vol. 609(7926), pages 287-292, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ji Yang & Lu Wang & Jiawei Wan & Farid El Gabaly & Andre L. Fernandes Cauduro & Bernice E. Mills & Jeng-Lung Chen & Liang-Ching Hsu & Daewon Lee & Xiao Zhao & Haimei Zheng & Miquel Salmeron & Caiqi Wa, 2024. "Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO2 to ethylene and CO," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Heather A. Hintz & Christo S. Sevov, 2022. "Catalyst-controlled functionalization of carboxylic acids by electrooxidation of self-assembled carboxyl monolayers," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Ke Chen & Hongdan Zhu & Shuxin Jiang & Kuiling Ding & Qian Peng & Xiaoming Wang, 2025. "Alkyne dimerization-hydroarylation to form pentasubstituted 1,3-dienes via binuclear nickel catalysis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Minjie Zhao & Chengeng Li & Daviel Gómez & Francisco Gonell & Vlad Martin Diaconescu & Laura Simonelli & Miguel Lopez Haro & Jose Juan Calvino & Debora Motta Meira & Patricia Concepción & Avelino Corm, 2023. "Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Bin Zhang & Haiyang Yuan & Ye Liu & Zijie Deng & Mark Douthwaite & Nicholas F. Dummer & Richard J. Lewis & Xingwu Liu & Sen Luan & Minghua Dong & Tianjiao Wang & Qingling Xu & Zhijuan Zhao & Huizhen L, 2024. "Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yifeng Liu & Zhiqiang Liu & Yu Hui & Liang Wang & Jian Zhang & Xianfeng Yi & Wei Chen & Chengtao Wang & Hai Wang & Yucai Qin & Lijuan Song & Anmin Zheng & Feng-Shou Xiao, 2023. "Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Benhan Fan & Miao Jiang & Guoqing Wang & Yang Zhao & Bingbao Mei & Jingfeng Han & Lei Ma & Cunyao Li & Guangjin Hou & Tao Wu & Li Yan & Yunjie Ding, 2024. "Elucidation of hemilabile-coordination-induced tunable regioselectivity in single-site Rh-catalyzed heterogeneous hydroformylation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59376-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.