IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61182-6.html
   My bibliography  Save this article

Highly efficient catalytic propane dehydrogenation driven by MFI zeolite defect sites

Author

Listed:
  • Qingpeng Cheng

    (Tianjin University
    KAUST Catalysis Center (KCC))

  • Xueli Yao

    (KAUST Catalysis Center (KCC))

  • Lifeng Ou

    (Nankai University)

  • Zhenpeng Hu

    (Nankai University)

  • Yu Pan

    (Tianjin University)

  • Lirong Zheng

    (Chinese Academy of Sciences)

  • Natalia Morlanes

    (KAUST Catalysis Center (KCC))

  • Edy Abou-Hamad

    (King Abdullah University of Science and Technology)

  • Xingang Li

    (Tianjin University)

  • Yu Han

    (KAUST Catalysis Center (KCC)
    South China University of Technology
    South China University of Technology)

  • Jorge Gascon

    (KAUST Catalysis Center (KCC))

Abstract

Propane dehydrogenation (PDH) is a critical technology for propylene production, yet overcoming the trade-off between activity and stability remains a major challenge. Here, we engineer a robust Pt@Sn-MFI catalyst with a wormhole-type structure, featuring highly dispersed Pt clusters robustly anchored by open sites in Sn-MFI, i.e., [SiO]3 − Sn−O−Ptn, complemented by abundant zeolite defects (i.e., Si-OH) in the proximity. This architecture enables a near-thermodynamic equilibrium conversion and a propylene selectivity of ≥98.5%, with the high apparent forward rate coefficient of 1064.5 molC3H6 gPt−1h−1bar−1 and stability for at least 120 h without requiring H2 or CO2 co-feeding. Comprehensive characterization, isotope-labeling experiments and theoretical calculations reveal a plausible hydroxy-assisted PDH reaction pathway, wherein the synergy between Pt sites and neighboring hydroxyl groups (i.e., zeolite defects) significantly reduces the energy barrier for H2 formation via the combination of H in propane adsorbed on Pt sites with H in hydroxyl groups, thereby promoting the PDH process.

Suggested Citation

  • Qingpeng Cheng & Xueli Yao & Lifeng Ou & Zhenpeng Hu & Yu Pan & Lirong Zheng & Natalia Morlanes & Edy Abou-Hamad & Xingang Li & Yu Han & Jorge Gascon, 2025. "Highly efficient catalytic propane dehydrogenation driven by MFI zeolite defect sites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61182-6
    DOI: 10.1038/s41467-025-61182-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61182-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61182-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sicong Ma & Zhi-Pan Liu, 2022. "Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ryong Ryoo & Jaeheon Kim & Changbum Jo & Seung Won Han & Jeong-Chul Kim & Hongjun Park & Jongho Han & Hye Sun Shin & Jae Won Shin, 2020. "Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis," Nature, Nature, vol. 585(7824), pages 221-224, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhengxing & Wang, Yeqing & Zhang, Peipei & Lu, Song & Chen, Yuxuan & Yu, Xiaotao & Guo, Min & Liu, Tiancun & Ying, Jiadi & Shen, Qi & Jin, Yinying & Yu, Zhixin, 2024. "Stable Cuδ+ species - Catalyzed CO₂ hydrogenation to methanol in silanol nests on Cu/S-1 catalyst," Applied Energy, Elsevier, vol. 365(C).
    2. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Shuang Liu & Yong Li & Xiaojuan Yu & Shaobo Han & Yan Zhou & Yuqi Yang & Hao Zhang & Zheng Jiang & Chuwei Zhu & Wei-Xue Li & Christof Wöll & Yuemin Wang & Wenjie Shen, 2022. "Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Zhang, Lei & Jiang, Peng & Zhang, Yibo & Fan, Yee Van & Geng, Yong, 2024. "Recycling impacts of renewable energy generation-related rare earth resources: A SWOT-based strategical analysis," Energy, Elsevier, vol. 312(C).
    5. Xin Lin & Shize Geng & Xianglong Du & Feiteng Wang & Xu Zhang & Fang Xiao & Zhengyi Xiao & Yucheng Wang & Jun Cheng & Zhifeng Zheng & Xiaoqing Huang & Lingzheng Bu, 2025. "Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Jie Yao & Yingluo He & Yan Zeng & Xiaobo Feng & Jiaqi Fan & Shoya Komiyama & Xiaojing Yong & Wei Zhang & Tiejian Zhao & Zhongshan Guo & Xiaobo Peng & Guohui Yang & Noritatsu Tsubaki, 2022. "Ammonia pools in zeolites for direct fabrication of catalytic centers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Tao Zhou & Han Yan & Wenjie Li & Wenjian Zhang & Hongtao He & Sunpei Hu & Ruyang Wang & Tianci Xiao & Limin Liu & Lijun Zhang & Wenlong Wu & Chengyuan Liu & Xusheng Zheng & Yang Pan & Jie Zeng & Xu Li, 2025. "Reaction-induced dynamic evolution of PtIn/SiO2 catalyst for propane dehydrogenation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Yong Yuan & Erwei Huang & Sooyeon Hwang & Ping Liu & Jingguang G. Chen, 2024. "Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Yuzhu Ma & Hongjin Zhang & Runfeng Lin & Yan Ai & Kun Lan & Linlin Duan & Wenyao Chen & Xuezhi Duan & Bing Ma & Changyao Wang & Xiaomin Li & Dongyuan Zhao, 2022. "Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Qian-Cheng Zhao & Lin Chen & Sicong Ma & Zhi-Pan Liu, 2025. "Data-driven discovery of Pt single atom embedded germanosilicate MFI zeolite catalysts for propane dehydrogenation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Yifeng Liu & Zhiqiang Liu & Yu Hui & Liang Wang & Jian Zhang & Xianfeng Yi & Wei Chen & Chengtao Wang & Hai Wang & Yucai Qin & Lijuan Song & Anmin Zheng & Feng-Shou Xiao, 2023. "Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61182-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.