IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36259-9.html
   My bibliography  Save this article

COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5

Author

Listed:
  • Gui Liu

    (Nanjing University)

  • Pengfei Liu

    (Nanjing Tech University)

  • Deming Meng

    (Nanjing University)

  • Taotao Zhao

    (Nanjing University)

  • Xiaofeng Qian

    (Nanjing University)

  • Qiang He

    (Nanjing University)

  • Xuefeng Guo

    (Nanjing University)

  • Jizhen Qi

    (Chinese Academy of Sciences)

  • Luming Peng

    (Nanjing University)

  • Nianhua Xue

    (Nanjing University)

  • Yan Zhu

    (Nanjing University)

  • Jingyuan Ma

    (Pudong New District)

  • Qiang Wang

    (Nanjing Tech University)

  • Xi Liu

    (Shanghai Jiao Tong University)

  • Liwei Chen

    (Chinese Academy of Sciences
    Shanghai Jiao Tong University)

  • Weiping Ding

    (Nanjing University)

Abstract

The hydrogenation of CO2 or CO to single organic product has received widespread attentions. Here we show a highly efficient and selective catalyst, Mo3S4@ions-ZSM-5, with molybdenum sulfide clusters ([Mo3S4]n+) confined in zeolitic cages of ZSM-5 molecular sieve for the reactions. Using continuous fixed bed reactor, for CO2 hydrogenation to methanol, the catalyst Mo3S4@NaZSM-5 shows methanol selectivity larger than 98% at 10.2% of carbon dioxide conversion at 180 °C and maintains the catalytic performance without any degeneration during continuous reaction of 1000 h. For CO hydrogenation, the catalyst Mo3S4@HZSM-5 exhibits a selectivity to C2 and C3 hydrocarbons stably larger than 98% in organics at 260 °C. The structure of the catalysts and the mechanism of COx hydrogenation over the catalysts are fully characterized experimentally and theorectically. Based on the results, we envision that the Mo3S4@ions-ZSM-5 catalysts display the importance of active clusters surrounded by permeable materials as mesocatalysts for discovery of new reactions.

Suggested Citation

  • Gui Liu & Pengfei Liu & Deming Meng & Taotao Zhao & Xiaofeng Qian & Qiang He & Xuefeng Guo & Jizhen Qi & Luming Peng & Nianhua Xue & Yan Zhu & Jingyuan Ma & Qiang Wang & Xi Liu & Liwei Chen & Weiping , 2023. "COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36259-9
    DOI: 10.1038/s41467-023-36259-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36259-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36259-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Wang & Guoxiong Wang & Jian Zhang & Chaoqun Bian & Xiangju Meng & Feng-Shou Xiao, 2017. "Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    2. Run-Ping Ye & Jie Ding & Weibo Gong & Morris D. Argyle & Qin Zhong & Yujun Wang & Christopher K. Russell & Zhenghe Xu & Armistead G. Russell & Qiaohong Li & Maohong Fan & Yuan-Gen Yao, 2019. "CO2 hydrogenation to high-value products via heterogeneous catalysis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Si Woo Lee & Mauricio Lopez Luna & Nikolay Berdunov & Weiming Wan & Sebastian Kunze & Shamil Shaikhutdinov & Beatriz Roldan Cuenya, 2023. "Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
    4. Zhongling Li & Wenlong Wu & Menglin Wang & Yanan Wang & Xinlong Ma & Lei Luo & Yue Chen & Kaiyuan Fan & Yang Pan & Hongliang Li & Jie Zeng, 2022. "Ambient-pressure hydrogenation of CO2 into long-chain olefins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
    6. Runping Ye & Lixuan Ma & Jianing Mao & Xinyao Wang & Xiaoling Hong & Alessandro Gallo & Yanfu Ma & Wenhao Luo & Baojun Wang & Riguang Zhang & Melis Seher Duyar & Zheng Jiang & Jian Liu, 2024. "A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Gao, Ruxing & Zhang, Leiyu & Wang, Lei & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Park, Hae-Gu & Gao, Ying & Zhu, Yuezhao & Wan, Hui & Guan, Guofeng & Zhao, Tiansheng, 2022. "Efficient production of renewable hydrocarbon fuels using waste CO2 and green H2 by integrating Fe-based Fischer-Tropsch synthesis and olefin oligomerization," Energy, Elsevier, vol. 248(C).
    8. Li, Sha & Haussener, Sophia, 2023. "Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels," Applied Energy, Elsevier, vol. 334(C).
    9. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Jiaming Liang & Jiangtao Liu & Lisheng Guo & Wenhang Wang & Chengwei Wang & Weizhe Gao & Xiaoyu Guo & Yingluo He & Guohui Yang & Shuhei Yasuda & Bing Liang & Noritatsu Tsubaki, 2024. "CO2 hydrogenation over Fe-Co bimetallic catalysts with tunable selectivity through a graphene fencing approach," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Daniel Chuquin-Vasco & Francis Parra & Nelson Chuquin-Vasco & Juan Chuquin-Vasco & Vanesa Lo-Iacono-Ferreira, 2021. "Prediction of Methanol Production in a Carbon Dioxide Hydrogenation Plant Using Neural Networks," Energies, MDPI, vol. 14(13), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36259-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.