IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35551-4.html
   My bibliography  Save this article

Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure

Author

Listed:
  • Yi-Chun Yeh

    (University of Southern California)

  • Jed A. Fuhrman

    (University of Southern California)

Abstract

Free-living and particle-associated marine prokaryotes have physiological, genomic, and phylogenetic differences, yet factors influencing their temporal dynamics remain poorly constrained. In this study, we quantify the entire microbial community composition monthly over several years, including viruses, prokaryotes, phytoplankton, and total protists, from the San-Pedro Ocean Time-series using ribosomal RNA sequencing and viral metagenomics. Canonical analyses show that in addition to physicochemical factors, the double-stranded DNA viral community is the strongest factor predicting free-living prokaryotes, explaining 28% of variability, whereas the phytoplankton (via chloroplast 16S rRNA) community is strongest with particle-associated prokaryotes, explaining 31% of variability. Unexpectedly, protist community explains little variability. Our findings suggest that biotic interactions are significant determinants of the temporal dynamics of prokaryotes, and the relative importance of specific interactions varies depending on lifestyles. Also, warming influenced the prokaryotic community, which largely remained oligotrophic summer-like throughout 2014–15, with cyanobacterial populations shifting from cold-water ecotypes to warm-water ecotypes.

Suggested Citation

  • Yi-Chun Yeh & Jed A. Fuhrman, 2022. "Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35551-4
    DOI: 10.1038/s41467-022-35551-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35551-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35551-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lisa R. Moore & Gabrielle Rocap & Sallie W. Chisholm, 1998. "Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes," Nature, Nature, vol. 393(6684), pages 464-467, June.
    2. S. A. Amin & L. R. Hmelo & H. M. van Tol & B. P. Durham & L. T. Carlson & K. R. Heal & R. L. Morales & C. T. Berthiaume & M. S. Parker & B. Djunaedi & A. E. Ingalls & M. R. Parsek & M. A. Moran & E. V, 2015. "Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria," Nature, Nature, vol. 522(7554), pages 98-101, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Milke & Jens Meyerjürgens & Meinhard Simon, 2023. "Ecological mechanisms and current systems shape the modular structure of the global oceans’ prokaryotic seascape," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    3. Kyoko Yarimizu & So Fujiyoshi & Mikihiko Kawai & Luis Norambuena-Subiabre & Emma-Karin Cascales & Joaquin-Ignacio Rilling & Jonnathan Vilugrón & Henry Cameron & Karen Vergara & Jesus Morón-López & Jac, 2020. "Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    4. Xavier Mayali & Ty J. Samo & Jeff A. Kimbrel & Megan M. Morris & Kristina Rolison & Courtney Swink & Christina Ramon & Young-Mo Kim & Nathalie Munoz-Munoz & Carrie Nicora & Sam Purvine & Mary Lipton &, 2023. "Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jennifer L. Matthews & Abeeha Khalil & Nachshon Siboni & Jeremy Bougoure & Paul Guagliardo & Unnikrishnan Kuzhiumparambil & Matthew DeMaere & Nine M. Le Reun & Justin R. Seymour & David J. Suggett & J, 2023. "Coral endosymbiont growth is enhanced by metabolic interactions with bacteria," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Susheel Bhanu Busi & Massimo Bourquin & Stilianos Fodelianakis & Grégoire Michoud & Tyler J. Kohler & Hannes Peter & Paraskevi Pramateftaki & Michail Styllas & Matteo Tolosano & Vincent Staercke & Mar, 2022. "Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Grossowicz, Michal & Marques, Gonçalo M. & van Voorn, George A.K., 2017. "A dynamic energy budget (DEB) model to describe population dynamics of the marine cyanobacterium Prochlorococcus marinus," Ecological Modelling, Elsevier, vol. 359(C), pages 320-332.
    8. Shousong Zhu & Lauren Higa & Antonia Barela & Caitlyn Lee & Yinhua Chen & Zhi-Yan Du, 2023. "Microalgal Consortia for Waste Treatment and Valuable Bioproducts," Energies, MDPI, vol. 16(2), pages 1-23, January.
    9. Sheng-Nan Chen & Pan-Lu Shang & Peng-Liang Kang & Man-Man Du, 2020. "Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
    10. Yunyan Deng & Kui Wang & Zhangxi Hu & Ying-Zhong Tang, 2022. "Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures," IJERPH, MDPI, vol. 19(8), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35551-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.