IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35407-x.html
   My bibliography  Save this article

Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine

Author

Listed:
  • Dan Wen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Limin S. Ding

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yanan Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaoye Li

    (Henan Normal University)

  • Xing Zhang

    (University of Chinese Academy of Sciences)

  • Fei Yuan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tongbiao Zhao

    (Chinese Academy of Sciences)

  • Aihua Zheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Zoonotic viruses circulate in the natural reservoir and sporadically spill over into human populations, resulting in endemics or pandemics. We previously found that the Chaoyang virus (CYV), an insect-specific flavivirus (ISF), is replication-defective in vertebrate cells. Here, we develope a proof-of-concept mosquito-delivered vaccine to control the Zika virus (ZIKV) within inaccessible wildlife hosts using CYV as the vector. The vaccine is constructed by replacing the pre-membrane and envelope (prME) proteins of CYV with those of ZIKV, assigned as CYV-ZIKV. CYV-ZIKV replicates efficiently in Aedes mosquitoes and disseminates to the saliva, with no venereal or transovarial transmission observed. To reduce the risk of CYV-ZIKV leaking into the environment, mosquitoes are X-ray irradiated to ensure 100% infertility, which does not affect the titer of CYV-ZIKV in the saliva. Immunization of mice via CYV-ZIKV-carrying mosquito bites elicites robust and persistent ZIKV-specific immune responses and confers complete protection against ZIKV challenge. Correspondingly, the immunized mice could no longer transmit the challenged ZIKV to naïve mosquitoes. Therefore, immunization with an ISF-vectored vaccine via mosquito bites is feasible to induce herd immunity in wildlife hosts of ZIKV. Our study provides a future avenue for developing a mosquito-delivered vaccine to eliminate zoonotic viruses in the sylvatic cycle.

Suggested Citation

  • Dan Wen & Limin S. Ding & Yanan Zhang & Xiaoye Li & Xing Zhang & Fei Yuan & Tongbiao Zhao & Aihua Zheng, 2022. "Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35407-x
    DOI: 10.1038/s41467-022-35407-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35407-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35407-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin M. Althouse & Mathilde Guerbois & Derek A. T. Cummings & Ousmane M. Diop & Ousmane Faye & Abdourahmane Faye & Diawo Diallo & Bakary Djilocalisse Sadio & Abdourahmane Sow & Oumar Faye & Amadou, 2018. "Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    3. Xiaoying Zheng & Dongjing Zhang & Yongjun Li & Cui Yang & Yu Wu & Xiao Liang & Yongkang Liang & Xiaoling Pan & Linchao Hu & Qiang Sun & Xiaohua Wang & Yingyang Wei & Jian Zhu & Wei Qian & Ziqiang Yan , 2019. "Incompatible and sterile insect techniques combined eliminate mosquitoes," Nature, Nature, vol. 572(7767), pages 56-61, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    2. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    3. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    4. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    5. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    6. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    7. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    9. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    10. Maxwell B Joseph & William E Stutz & Pieter T J Johnson, 2016. "Multilevel Models for the Distribution of Hosts and Symbionts," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    11. Laure Bonnaud & Nicolas Fortané, 2017. "Serge Morand and Muriel Figuié (eds), 2016, Emergence de maladies infectieuses. Risques et enjeux de société (The emergence of infectious diseases. Societal risks and stakes)," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 225-228, December.
    12. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    13. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    15. Ricardo Aguas & Neil M Ferguson, 2013. "Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    16. Katarzyna Kubiak & Hanna Szymańska & Małgorzata Dmitryjuk & Ewa Dzika, 2022. "Abundance of Ixodes ricinus Ticks (Acari: Ixodidae) and the Diversity of Borrelia Species in Northeastern Poland," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    17. Anna C. Peterson & Himanshu Sharma & Arvind Kumar & Bruno M. Ghersi & Scott J. Emrich & Kurt J. Vandegrift & Amit Kapoor & Michael J. Blum, 2021. "Rodent Virus Diversity and Differentiation across Post-Katrina New Orleans," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    18. Blanco, Esther & Baier, Alexandra & Holzmeister, Felix & Jaber-Lopez, Tarek & Struwe, Natalie, 2022. "Substitution of social sustainability concerns under the Covid-19 pandemic," Ecological Economics, Elsevier, vol. 192(C).
    19. Rosemary A. McFarlane & Adrian C. Sleigh & Anthony J. McMichael, 2013. "Land-Use Change and Emerging Infectious Disease on an Island Continent," IJERPH, MDPI, vol. 10(7), pages 1-21, June.
    20. Luiza M Karpavicius & Ariaster Chimeli, 2023. "Forest Protection and Human Health: The Case of Malaria in the Brazilian Amazon," Working Papers, Department of Economics 2023_08, University of São Paulo (FEA-USP), revised 26 Jul 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35407-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.