IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34206-8.html
   My bibliography  Save this article

Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia

Author

Listed:
  • Yupeng Sang

    (Sichuan University)

  • Zhiqin Long

    (Sichuan University)

  • Xuming Dan

    (Sichuan University)

  • Jiajun Feng

    (Sichuan University)

  • Tingting Shi

    (Sichuan University)

  • Changfu Jia

    (Sichuan University)

  • Xinxin Zhang

    (Sichuan University)

  • Qiang Lai

    (Sichuan University)

  • Guanglei Yang

    (Sichuan University)

  • Hongying Zhang

    (Sichuan University)

  • Xiaoting Xu

    (Sichuan University)

  • Huanhuan Liu

    (Sichuan University)

  • Yuanzhong Jiang

    (Sichuan University)

  • Pär K. Ingvarsson

    (Swedish University of Agricultural Sciences)

  • Jianquan Liu

    (Sichuan University)

  • Kangshan Mao

    (Sichuan University)

  • Jing Wang

    (Sichuan University)

Abstract

Rapid global climate change is posing a substantial threat to biodiversity. The assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation and mitigation strategies. Here we generate a chromosome-scale genome assembly and re-sequence genomes of 230 individuals collected from 24 populations for Populus koreana, a pioneer and keystone tree species in temperate forests of East Asia. We integrate population genomics and environmental variables to reveal a set of climate-associated single-nucleotide polymorphisms, insertion/deletions and structural variations, especially numerous adaptive non-coding variants distributed across the genome. We incorporate these variants into an environmental modeling scheme to predict a highly spatiotemporal shift of this species in response to future climate change. We further identify the most vulnerable populations that need conservation priority and many candidate genes and variants that may be useful for forest tree breeding with special aims. Our findings highlight the importance of integrating genomic and environmental data to predict adaptive capacity of a key forest to rapid climate change in the future.

Suggested Citation

  • Yupeng Sang & Zhiqin Long & Xuming Dan & Jiajun Feng & Tingting Shi & Changfu Jia & Xinxin Zhang & Qiang Lai & Guanglei Yang & Hongying Zhang & Xiaoting Xu & Huanhuan Liu & Yuanzhong Jiang & Pär K. In, 2022. "Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34206-8
    DOI: 10.1038/s41467-022-34206-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34206-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34206-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    2. Andrew V. Gougherty & Stephen R. Keller & Matthew C. Fitzpatrick, 2021. "Maladaptation, migration and extirpation fuel climate change risk in a forest tree species," Nature Climate Change, Nature, vol. 11(2), pages 166-171, February.
    3. Pardis C. Sabeti & David E. Reich & John M. Higgins & Haninah Z. P. Levine & Daniel J. Richter & Stephen F. Schaffner & Stacey B. Gabriel & Jill V. Platko & Nick J. Patterson & Gavin J. McDonald & Han, 2002. "Detecting recent positive selection in the human genome from haplotype structure," Nature, Nature, vol. 419(6909), pages 832-837, October.
    4. Moises Exposito-Alonso & Hernán A. Burbano & Oliver Bossdorf & Rasmus Nielsen & Detlef Weigel, 2019. "Natural selection on the Arabidopsis thaliana genome in present and future climates," Nature, Nature, vol. 573(7772), pages 126-129, September.
    5. Moises Exposito-Alonso & Hernán A. Burbano & Oliver Bossdorf & Rasmus Nielsen & Detlef Weigel, 2019. "Publisher Correction: Natural selection on the Arabidopsis thaliana genome in present and future climates," Nature, Nature, vol. 574(7778), pages 16-16, October.
    6. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    7. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Marková & Hayley C. Lanier & Marco A. Escalante & Marcos O. R. Cruz & Michaela Horníková & Mateusz Konczal & Lawrence J. Weider & Jeremy B. Searle & Petr Kotlík, 2023. "Local adaptation and future climate vulnerability in a wild rodent," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Vittadini, Giorgio & Minotti, Simona C. & Fattore, Marco & Lovaglio, Pietro G., 2007. "On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5828-5846, August.
    4. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    5. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    6. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    7. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    8. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    9. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    10. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    11. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    12. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    14. Kazi-Aoual, Frederique & Hitier, Simon & Sabatier, Robert & Lebreton, Jean-Dominique, 1995. "Refined approximations to permutation tests for multivariate inference," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 643-656, December.
    15. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    16. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    17. Cook, Judith A. & Razzano, Lisa & Cappelleri, Joseph C., 1996. "Canonical correlation analysis of residential and vocational outcomes following psychiatric rehabilitation," Evaluation and Program Planning, Elsevier, vol. 19(4), pages 351-363, November.
    18. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    19. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    20. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34206-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.