IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34203-x.html
   My bibliography  Save this article

Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane

Author

Listed:
  • Fangyuan Ye

    (East China University of Science & Technology
    University of Potsdam)

  • Shuo Zhang

    (East China University of Science & Technology)

  • Jonathan Warby

    (University of Potsdam)

  • Jiawei Wu

    (East China University of Science & Technology)

  • Emilio Gutierrez-Partida

    (University of Potsdam)

  • Felix Lang

    (University of Potsdam)

  • Sahil Shah

    (University of Potsdam)

  • Elifnaz Saglamkaya

    (University of Potsdam)

  • Bowen Sun

    (University of Potsdam)

  • Fengshuo Zu

    (Humboldt-Universitat zu Berlin, Institut fur Physik & IRIS Adlershof)

  • Safa Shoaee

    (University of Potsdam)

  • Haifeng Wang

    (East China University of Science & Technology)

  • Burkhard Stiller

    (University of Potsdam)

  • Dieter Neher

    (University of Potsdam)

  • Wei-Hong Zhu

    (East China University of Science & Technology)

  • Martin Stolterfoht

    (University of Potsdam)

  • Yongzhen Wu

    (East China University of Science & Technology)

Abstract

Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.

Suggested Citation

  • Fangyuan Ye & Shuo Zhang & Jonathan Warby & Jiawei Wu & Emilio Gutierrez-Partida & Felix Lang & Sahil Shah & Elifnaz Saglamkaya & Bowen Sun & Fengshuo Zu & Safa Shoaee & Haifeng Wang & Burkhard Stille, 2022. "Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34203-x
    DOI: 10.1038/s41467-022-34203-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34203-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34203-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erkan Aydin & Thomas G. Allen & Michele De Bastiani & Lujia Xu & Jorge Ávila & Michael Salvador & Emmanuel Van Kerschaver & Stefaan De Wolf, 2020. "Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells," Nature Energy, Nature, vol. 5(11), pages 851-859, November.
    2. Cheng Liu & Yi Yang & Kasparas Rakstys & Arup Mahata & Marius Franckevicius & Edoardo Mosconi & Raminta Skackauskaite & Bin Ding & Keith G. Brooks & Onovbaramwen Jennifer Usiobo & Jean-Nicolas Audinot, 2021. "Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Jingjing He & Junxian Liu & Yu Hou & Yun Wang & Shuang Yang & Hua Gui Yang, 2020. "Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    5. Martin Stolterfoht & Christian M. Wolff & José A. Márquez & Shanshan Zhang & Charles J. Hages & Daniel Rothhardt & Steve Albrecht & Paul L. Burn & Paul Meredith & Thomas Unold & Dieter Neher, 2018. "Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells," Nature Energy, Nature, vol. 3(10), pages 847-854, October.
    6. Jixian Xu & Andrei Buin & Alexander H. Ip & Wei Li & Oleksandr Voznyy & Riccardo Comin & Mingjian Yuan & Seokmin Jeon & Zhijun Ning & Jeffrey J. McDowell & Pongsakorn Kanjanaboos & Jon-Paul Sun & Xinz, 2015. "Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    7. Jing Wang & Jie Zhang & Yingzhi Zhou & Hongbin Liu & Qifan Xue & Xiaosong Li & Chu-Chen Chueh & Hin-Lap Yip & Zonglong Zhu & Alex K. Y. Jen, 2020. "Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Cacovich & Guillaume Vidon & Matteo Degani & Marie Legrand & Laxman Gouda & Jean-Baptiste Puel & Yana Vaynzof & Jean-François Guillemoles & Daniel Ory & Giulia Grancini, 2022. "Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    3. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Ahmed A. Said & Erkan Aydin & Esma Ugur & Zhaojian Xu & Caner Deger & Badri Vishal & Aleš Vlk & Pia Dally & Bumin K. Yildirim & Randi Azmi & Jiang Liu & Edward A. Jackson & Holly M. Johnson & Manting , 2024. "Sublimed C60 for efficient and repeatable perovskite-based solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    7. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    8. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Wei Qin & Wajid Ali & Jianfeng Wang & Yong Liu & Xiaolan Yan & Pengfei Zhang & Zhaochi Feng & Hao Tian & Yanfeng Yin & Wenming Tian & Can Li, 2023. "Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Zhang, Jingyi & Chang, Nathan & Fagerholm, Cara & Qiu, Ming & Shuai, Ling & Egan, Renate & Yuan, Chris, 2022. "Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Costas Prouskas & Angelos Mourkas & Georgios Zois & Elefterios Lidorikis & Panos Patsalas, 2022. "A New Type of Architecture of Dye-Sensitized Solar Cells as an Alternative Pathway to Outdoor Photovoltaics," Energies, MDPI, vol. 15(7), pages 1-14, March.
    12. Yiyang Gong & Shuai Yue & Yin Liang & Wenna Du & Tieyuan Bian & Chuanxiu Jiang & Xiaotian Bao & Shuai Zhang & Mingzhu Long & Guofu Zhou & Jun Yin & Shibin Deng & Qing Zhang & Bo Wu & Xinfeng Liu, 2024. "Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden−Popper perovskites by anchoring the organic cation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    14. Cheng Liu & Yi Yang & Kasparas Rakstys & Arup Mahata & Marius Franckevicius & Edoardo Mosconi & Raminta Skackauskaite & Bin Ding & Keith G. Brooks & Onovbaramwen Jennifer Usiobo & Jean-Nicolas Audinot, 2021. "Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Thibault Lemercier & Lara Perrin & Emilie Planès & Solenn Berson & Lionel Flandin, 2020. "A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells," Energies, MDPI, vol. 13(15), pages 1-18, July.
    16. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    17. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    18. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Pengju Shi & Jiazhe Xu & Ilhan Yavuz & Tianyi Huang & Shaun Tan & Ke Zhao & Xu Zhang & Yuan Tian & Sisi Wang & Wei Fan & Yahui Li & Donger Jin & Xuemeng Yu & Chenyue Wang & Xingyu Gao & Zhong Chen & E, 2024. "Strain regulates the photovoltaic performance of thick-film perovskites," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34203-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.