IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33517-0.html
   My bibliography  Save this article

Schemas provide a scaffold for neocortical integration of new memories over time

Author

Listed:
  • Sam Audrain

    (University Health Network
    University of Toronto)

  • Mary Pat McAndrews

    (University Health Network
    University of Toronto)

Abstract

Memory transformation is increasingly acknowledged in theoretical accounts of systems consolidation, yet how memory quality and neural representation change over time and how schemas influence this process remains unclear. We examined the behavioral quality and neural representation of schema-congruent and incongruent object-scene pairs retrieved across 10-minutes and 72-hours using fMRI. When a congruent schema was available, memory became coarser over time, aided by post-encoding coupling between the anterior hippocampus and medial prefrontal cortex (mPFC). Only schema-congruent representations were integrated in the mPFC over time, and were organized according to schematic context. In the hippocampus, pattern similarity changed across 72-hours such that the posterior hippocampus represented specific details and the anterior hippocampus represented the general context of specific memories, irrespective of congruency. Our findings suggest schemas are used as a scaffold to facilitate neocortical integration of congruent information, and illustrate evolution in hippocampal organization of detailed contextual memory over time.

Suggested Citation

  • Sam Audrain & Mary Pat McAndrews, 2022. "Schemas provide a scaffold for neocortical integration of new memories over time," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33517-0
    DOI: 10.1038/s41467-022-33517-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33517-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33517-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Serra E. Favila & Avi J. H. Chanales & Brice A. Kuhl, 2016. "Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    2. Oded Bein & Niv Reggev & Anat Maril, 2020. "Prior knowledge promotes hippocampal separation but cortical assimilation in the left inferior frontal gyrus," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Margaret L. Schlichting & Jeanette A. Mumford & Alison R. Preston, 2015. "Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    4. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    5. Lisa C. Dandolo & Lars Schwabe, 2018. "Time-dependent memory transformation along the hippocampal anterior–posterior axis," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catherine R. Walsh & Jesse Rissman, 2023. "Behavioral representational similarity analysis reveals how episodic learning is influenced by and reshapes semantic memory," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob L. S. Bellmund & Lorena Deuker & Nicole D. Montijn & Christian F. Doeller, 2022. "Mnemonic construction and representation of temporal structure in the hippocampal formation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Li Zheng & Zhiyao Gao & Andrew S. McAvan & Eve A. Isham & Arne D. Ekstrom, 2021. "Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Valentina Krenz & Tobias Sommer & Arjen Alink & Benno Roozendaal & Lars Schwabe, 2021. "Noradrenergic arousal after encoding reverses the course of systems consolidation in humans," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Catherine R. Walsh & Jesse Rissman, 2023. "Behavioral representational similarity analysis reveals how episodic learning is influenced by and reshapes semantic memory," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    9. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    10. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    11. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    13. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    14. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    15. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    16. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    17. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    19. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33517-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.