IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32983-w.html
   My bibliography  Save this article

Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes

Author

Listed:
  • Kit McColl

    (University of Bath
    Harwell Science and Innovation Campus)

  • Robert A. House

    (Harwell Science and Innovation Campus
    University of Oxford)

  • Gregory J. Rees

    (Harwell Science and Innovation Campus
    University of Oxford)

  • Alexander G. Squires

    (University of Bath)

  • Samuel W. Coles

    (University of Bath
    Harwell Science and Innovation Campus)

  • Peter G. Bruce

    (Harwell Science and Innovation Campus
    University of Oxford
    University of Oxford)

  • Benjamin J. Morgan

    (University of Bath
    Harwell Science and Innovation Campus)

  • M. Saiful Islam

    (University of Bath
    Harwell Science and Innovation Campus
    University of Oxford)

Abstract

Lithium-rich disordered rocksalt cathodes display high capacities arising from redox chemistry on both transition-metal ions (TM-redox) and oxygen ions (O-redox), making them promising candidates for next-generation lithium-ion batteries. However, the atomic-scale mechanisms governing O-redox behaviour in disordered structures are not fully understood. Here we show that, at high states of charge in the disordered rocksalt Li2MnO2F, transition metal migration is necessary for the formation of molecular O2 trapped in the bulk. Density functional theory calculations reveal that O2 is thermodynamically favoured over other oxidised O species, which is confirmed by resonant inelastic X-ray scattering data showing only O2 forms. When O-redox involves irreversible Mn migration, this mechanism results in a path-dependent voltage hysteresis between charge and discharge, commensurate with the hysteresis observed electrochemically. The implications are that irreversible transition metal migration should be suppressed to reduce the voltage hysteresis that afflicts O-redox disordered rocksalt cathodes.

Suggested Citation

  • Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32983-w
    DOI: 10.1038/s41467-022-32983-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32983-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32983-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert A. House & Urmimala Maitra & Miguel A. Pérez-Osorio & Juan G. Lozano & Liyu Jin & James W. Somerville & Laurent C. Duda & Abhishek Nag & Andrew Walters & Ke-Jin Zhou & Matthew R. Roberts & Pete, 2020. "Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes," Nature, Nature, vol. 577(7791), pages 502-508, January.
    2. Gaurav Assat & Jean-Marie Tarascon, 2018. "Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries," Nature Energy, Nature, vol. 3(5), pages 373-386, May.
    3. Huiwen Ji & Alexander Urban & Daniil A. Kitchaev & Deok-Hwang Kwon & Nongnuch Artrith & Colin Ophus & Wenxuan Huang & Zijian Cai & Tan Shi & Jae Chul Kim & Haegyeom Kim & Gerbrand Ceder, 2019. "Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Robert A. House & John-Joseph Marie & Miguel A. Pérez-Osorio & Gregory J. Rees & Edouard Boivin & Peter G. Bruce, 2021. "The role of O2 in O-redox cathodes for Li-ion batteries," Nature Energy, Nature, vol. 6(8), pages 781-789, August.
    5. Maxwell D. Radin & Julija Vinckeviciute & Ram Seshadri & Anton Van der Ven, 2019. "Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials," Nature Energy, Nature, vol. 4(8), pages 639-646, August.
    6. Huiwen Ji & Jinpeng Wu & Zijian Cai & Jue Liu & Deok-Hwang Kwon & Hyunchul Kim & Alexander Urban & Joseph K. Papp & Emily Foley & Yaosen Tian & Mahalingam Balasubramanian & Haegyeom Kim & Raphaële J. , 2020. "Ultrahigh power and energy density in partially ordered lithium-ion cathode materials," Nature Energy, Nature, vol. 5(3), pages 213-221, March.
    7. Enyuan Hu & Xiqian Yu & Ruoqian Lin & Xuanxuan Bi & Jun Lu & Seongmin Bak & Kyung-Wan Nam & Huolin L. Xin & Cherno Jaye & Daniel A. Fischer & Kahlil Amine & Xiao-Qing Yang, 2018. "Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release," Nature Energy, Nature, vol. 3(8), pages 690-698, August.
    8. Robert A. House & Gregory J. Rees & Miguel A. Pérez-Osorio & John-Joseph Marie & Edouard Boivin & Alex W. Robertson & Abhishek Nag & Mirian Garcia-Fernandez & Ke-Jin Zhou & Peter G. Bruce, 2020. "First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk," Nature Energy, Nature, vol. 5(10), pages 777-785, October.
    9. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    10. Robert A. House & John-Joseph Marie & Joohyuk Park & Gregory J. Rees & Stefano Agrestini & Abhishek Nag & Mirian Garcia-Fernandez & Ke-Jin Zhou & Peter G. Bruce, 2021. "Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Jinhyuk Lee & Daniil A. Kitchaev & Deok-Hwang Kwon & Chang-Wook Lee & Joseph K. Papp & Yi-Sheng Liu & Zhengyan Lun & Raphaële J. Clément & Tan Shi & Bryan D. McCloskey & Jinghua Guo & Mahalingam Balas, 2018. "Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials," Nature, Nature, vol. 556(7700), pages 185-190, April.
    12. Naoaki Yabuuchi & Masanobu Nakayama & Mitsue Takeuchi & Shinichi Komaba & Yu Hashimoto & Takahiro Mukai & Hiromasa Shiiba & Kei Sato & Yuki Kobayashi & Aiko Nakao & Masao Yonemura & Keisuke Yamanaka &, 2016. "Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Zijian Cai & Bin Ouyang & Han-Ming Hau & Tina Chen & Raynald Giovine & Krishna Prasad Koirala & Linze Li & Huiwen Ji & Yang Ha & Yingzhi Sun & Jianping Huang & Yu Chen & Vincent Wu & Wanli Yang & Chon, 2024. "In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials," Nature Energy, Nature, vol. 9(1), pages 27-36, January.
    5. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Qi Liang & Peirong Li & Yue Zhao & Supeng Chen & Jixiang Yin & Yingchun Lyu & Qiang Li & Qinghao Li, 2023. "Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode," Energies, MDPI, vol. 16(18), pages 1-12, September.
    9. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Xuekun Lu & Marco Lagnoni & Antonio Bertei & Supratim Das & Rhodri E. Owen & Qi Li & Kieran O’Regan & Aaron Wade & Donal P. Finegan & Emma Kendrick & Martin Z. Bazant & Dan J. L. Brett & Paul R. Shear, 2023. "Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Pepe, Simona & Ciucci, Francesco, 2023. "Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering," Applied Energy, Elsevier, vol. 350(C).
    17. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    18. Wassiliadis, Nikolaos & Ank, Manuel & Wildfeuer, Leo & Kick, Michael K. & Lienkamp, Markus, 2021. "Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications," Applied Energy, Elsevier, vol. 295(C).
    19. Minsung Baek & Jinyoung Kim & Jaegyu Jin & Jang Wook Choi, 2021. "Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32983-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.