IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6740-d1244536.html
   My bibliography  Save this article

Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode

Author

Listed:
  • Qi Liang

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

  • Peirong Li

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

  • Yue Zhao

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

  • Supeng Chen

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

  • Jixiang Yin

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

  • Yingchun Lyu

    (Materials Genome Institute, Shanghai University, Shanghai 200444, China)

  • Qiang Li

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

  • Qinghao Li

    (College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China)

Abstract

Cation-disordered rock salt (DRX) cathodes exhibit high specific capacity due to the simultaneous use of anionic and cationic redox reactions. However, DRX systems face severe challenges that limit their practical applications; a most important challenge is their poor rate performance. In this work, the structure and morphology of Li 1.17 Ti 0.58 Ni 0.25 O 2 (LTNO) were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. In combination with various electrochemical characterizations, we found that the sluggish kinetics of anionic redox within LTNO can be the key reason for the inferior rate performance. By sample relaxation at moderate temperature and X-ray absorption near edge structure (XANES), the ligand-to-metal charge transfer process is verified to occur between O and Ni and exhibits a prolonged characteristic time of 113.8 min. This time-consuming charge transfer process is verified to be the very fundamental origin of the slow kinetics of oxygen oxidation and reduction. This claim is further supported by the galvanostatic intermittent titration technique (GITT) at different temperatures. These findings provide essential guidance for understanding and further optimizing cathodes with anion redox reactions not only in the context of DRX cathodes but also conventional Li-rich cathodes.

Suggested Citation

  • Qi Liang & Peirong Li & Yue Zhao & Supeng Chen & Jixiang Yin & Yingchun Lyu & Qiang Li & Qinghao Li, 2023. "Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode," Energies, MDPI, vol. 16(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6740-:d:1244536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Athinarayanan Balasankar & Sathya Elango Arthiya & Subramaniyan Ramasundaram & Paramasivam Sumathi & Selvaraj Arokiyaraj & Taehwan Oh & Kanakaraj Aruchamy & Ganesan Sriram & Mahaveer D. Kurkuri, 2022. "Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Robert A. House & Gregory J. Rees & Miguel A. Pérez-Osorio & John-Joseph Marie & Edouard Boivin & Alex W. Robertson & Abhishek Nag & Mirian Garcia-Fernandez & Ke-Jin Zhou & Peter G. Bruce, 2020. "First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk," Nature Energy, Nature, vol. 5(10), pages 777-785, October.
    3. Gaurav Assat & Jean-Marie Tarascon, 2018. "Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries," Nature Energy, Nature, vol. 3(5), pages 373-386, May.
    4. Arya Das & Benjamin Raj & Mamata Mohapatra & Shuang Ma Andersen & Suddhasatwa Basu, 2022. "Performance and future directions of transition metal sulfide‐based electrode materials towards supercapacitor/supercapattery," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    5. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    5. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    6. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    12. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    13. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    14. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    16. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    17. Idris Idris Sunusi & Jun Zhou & Chenyang Sun & Zhenzhen Wang & Jianlei Zhao & Yongshuan Wu, 2021. "Development of Online Adaptive Traction Control for Electric Robotic Tractors," Energies, MDPI, vol. 14(12), pages 1-24, June.
    18. Arne Jeppe & Heike Proff & Max Eickhoff, 2023. "Economic Potentials of Ecologically Attractive Multi-Life Products—The Example of Lithium-Ion Batteries," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    19. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    20. Xie, Lin & Ustolin, Federico & Lundteigen, Mary Ann & Li, Tian & Liu, Yiliu, 2022. "Performance analysis of safety barriers against cascading failures in a battery pack," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6740-:d:1244536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.