IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30113-0.html
   My bibliography  Save this article

Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries

Author

Listed:
  • Fang Fu

    (College of Materials Science and Engineering, Huaqiao University)

  • Xiang Liu

    (Argonne National Laboratory)

  • Xiaoguang Fu

    (College of Materials Science and Engineering, Huaqiao University)

  • Hongwei Chen

    (College of Materials Science and Engineering, Huaqiao University)

  • Ling Huang

    (College of Chemistry and Chemical Engineering, Xiamen University)

  • Jingjing Fan

    (College of Chemistry and Chemical Engineering, Xiamen University)

  • Jiabo Le

    (College of Chemistry and Chemical Engineering, Xiamen University)

  • Qiuxiang Wang

    (College of Materials Science and Engineering, Huaqiao University)

  • Weihua Yang

    (College of Materials Science and Engineering, Huaqiao University)

  • Yang Ren

    (Advanced Photon Source, Argonne National Laboratory)

  • Khalil Amine

    (Argonne National Laboratory
    Materials Science and Engineering, Stanford University
    Materials Science and Nano-engineering, Mohammed VI Polytechnic University)

  • Shi-Gang Sun

    (College of Chemistry and Chemical Engineering, Xiamen University)

  • Gui-Liang Xu

    (Argonne National Laboratory)

Abstract

P2-type sodium manganese-rich layered oxides are promising cathode candidates for sodium-based batteries because of their appealing cost-effective and capacity features. However, the structural distortion and cationic rearrangement induced by irreversible phase transition and anionic redox reaction at high cell voltage (i.e., >4.0 V) cause sluggish Na-ion kinetics and severe capacity decay. To circumvent these issues, here, we report a strategy to develop P2-type layered cathodes via configurational entropy and ion-diffusion structural tuning. In situ synchrotron X-ray diffraction combined with electrochemical kinetic tests and microstructural characterizations reveal that the entropy-tuned Na0.62Mn0.67Ni0.23Cu0.05Mg0.07Ti0.01O2 (CuMgTi-571) cathode possesses more {010} active facet, improved structural and thermal stability and faster anionic redox kinetics compared to Na0.62Mn0.67Ni0.37O2. When tested in combination with a Na metal anode and a non-aqueous NaClO4-based electrolyte solution in coin cell configuration, the CuMgTi-571-based positive electrode enables an 87% capacity retention after 500 cycles at 120 mA g−1 and about 75% capacity retention after 2000 cycles at 1.2 A g−1.

Suggested Citation

  • Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30113-0
    DOI: 10.1038/s41467-022-30113-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30113-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30113-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaurav Assat & Jean-Marie Tarascon, 2018. "Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries," Nature Energy, Nature, vol. 3(5), pages 373-386, May.
    2. Kai Zhang & Duho Kim & Zhe Hu & Mihui Park & Gahee Noh & Yujeong Yang & Jing Zhang & Vincent Wing-hei Lau & Shu-Lei Chou & Maenghyo Cho & Si-Young Choi & Yong-Mook Kang, 2019. "Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Wenhua Zuo & Xiangsi Liu & Jimin Qiu & Dexin Zhang & Zhumei Xiao & Jisheng Xie & Fucheng Ren & Jinming Wang & Yixiao Li & Gregorio F. Ortiz & Wen Wen & Shunqing Wu & Ming-Sheng Wang & Riqiang Fu & Yon, 2021. "Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Enyuan Hu & Xiqian Yu & Ruoqian Lin & Xuanxuan Bi & Jun Lu & Seongmin Bak & Kyung-Wan Nam & Huolin L. Xin & Cherno Jaye & Daniel A. Fischer & Kahlil Amine & Xiao-Qing Yang, 2018. "Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release," Nature Energy, Nature, vol. 3(8), pages 690-698, August.
    5. Rui Wang & Xin Chen & Zhongyuan Huang & Jinlong Yang & Fusheng Liu & Mihai Chu & Tongchao Liu & Chaoqi Wang & Weiming Zhu & Shuankui Li & Shunning Li & Jiaxin Zheng & Jie Chen & Lunhua He & Lei Jin & , 2021. "Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Ha Tran Huu & Ngoc Hung Vu & Hyunwoo Ha & Joonhee Moon & Hyun You Kim & Won Bin Im, 2021. "Sub-micro droplet reactors for green synthesis of Li3VO4 anode materials in lithium ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiyu Zhang & Yongliang Yan & Xin Wang & Yanyan Cui & Zhengfeng Zhang & Sen Wang & Zhengkun Xie & Pengfei Yan & Weihua Chen, 2023. "Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yantao Wang & Hongtao Qu & Bowen Liu & Xiaoju Li & Jiangwei Ju & Jiedong Li & Shu Zhang & Jun Ma & Chao Li & Zhiwei Hu & Chung-Kai Chang & Hwo-Shuenn Sheu & Longfei Cui & Feng Jiang & Ernst R. H. Eck , 2023. "Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    10. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Shunsuke Sasaki & Souvik Giri & Simon J. Cassidy & Sunita Dey & Maria Batuk & Daphne Vandemeulebroucke & Giannantonio Cibin & Ronald I. Smith & Philip Holdship & Clare P. Grey & Joke Hadermann & Simon, 2023. "Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Tongtong Shang & Dongdong Xiao & Fanqi Meng & Xiaohui Rong & Ang Gao & Ting Lin & Zhexin Tang & Xiaozhi Liu & Xinyan Li & Qinghua Zhang & Yuren Wen & Ruijuan Xiao & Xuefeng Wang & Dong Su & Yong-Sheng, 2022. "Real-space measurement of orbital electron populations for Li1-xCoO2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Zijian Cai & Bin Ouyang & Han-Ming Hau & Tina Chen & Raynald Giovine & Krishna Prasad Koirala & Linze Li & Huiwen Ji & Yang Ha & Yingzhi Sun & Jianping Huang & Yu Chen & Vincent Wu & Wanli Yang & Chon, 2024. "In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials," Nature Energy, Nature, vol. 9(1), pages 27-36, January.
    16. Xing Ou & Tongchao Liu & Wentao Zhong & Xinming Fan & Xueyi Guo & Xiaojing Huang & Liang Cao & Junhua Hu & Bao Zhang & Yong S. Chu & Guorong Hu & Zhang Lin & Mouad Dahbi & Jones Alami & Khalil Amine &, 2022. "Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Sulay Saha & Prashant Kumar Gupta & Raj Ganesh S. Pala, 2021. "Stabilization of non‐native polymorphs for electrocatalysis and energy storage systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    18. Luo, Guiling & Li, Xiaowei & Chen, Linlin & Gu, Jun & Huang, Yuhong & Sun, Jing & Liu, Haiyan & Chao, Yanhong & Zhu, Wenshuai & Liu, Zhichang, 2023. "Electrochemical recovery lithium from brine via taming surface wettability of regeneration spent batteries cathode materials," Applied Energy, Elsevier, vol. 337(C).
    19. Guanjun Ji & Junxiong Wang & Zheng Liang & Kai Jia & Jun Ma & Zhaofeng Zhuang & Guangmin Zhou & Hui-Ming Cheng, 2023. "Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Qi Liang & Peirong Li & Yue Zhao & Supeng Chen & Jixiang Yin & Yingchun Lyu & Qiang Li & Qinghao Li, 2023. "Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode," Energies, MDPI, vol. 16(18), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30113-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.