IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35982-7.html
   My bibliography  Save this article

Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics

Author

Listed:
  • Yantao Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hongtao Qu

    (Radboud University)

  • Bowen Liu

    (Tianjin University of Technology)

  • Xiaoju Li

    (Shandong University)

  • Jiangwei Ju

    (Chinese Academy of Sciences)

  • Jiedong Li

    (Chinese Academy of Sciences)

  • Shu Zhang

    (Chinese Academy of Sciences)

  • Jun Ma

    (Chinese Academy of Sciences)

  • Chao Li

    (Tianjin University of Technology)

  • Zhiwei Hu

    (Max Plank Institute for Chemical Physics of Solids)

  • Chung-Kai Chang

    (National Synchrotron Radiation Research Center)

  • Hwo-Shuenn Sheu

    (National Synchrotron Radiation Research Center)

  • Longfei Cui

    (Chinese Academy of Sciences)

  • Feng Jiang

    (Chinese Academy of Sciences)

  • Ernst R. H. Eck

    (Radboud University)

  • Arno P. M. Kentgens

    (Radboud University)

  • Guanglei Cui

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liquan Chen

    (Chinese Academy of Sciences)

Abstract

Easy-to-manufacture Li2S-P2S5 glass ceramics are the key to large-scale all-solid-state lithium batteries from an industrial point of view, while their commercialization is greatly hampered by the low room temperature Li+ conductivity, especially due to the lack of solutions. Herein, we propose a nanocrystallization strategy to fabricate super Li+-conductive glass ceramics. Through regulating the nucleation energy, the crystallites within glass ceramics can self-organize into hetero-nanodomains during the solid-state reaction. Cryogenic transmission electron microscope and electron holography directly demonstrate the numerous closely spaced grain boundaries with enriched charge carriers, which actuate superior Li+-conduction as confirmed by variable-temperature solid-state nuclear magnetic resonance. Glass ceramics with a record Li+ conductivity of 13.2 mS cm−1 are prepared. The high Li+ conductivity ensures stable operation of a 220 μm thick LiNi0.6Mn0.2Co0.2O2 composite cathode (8 mAh cm−2), with which the all-solid-state lithium battery reaches a high energy density of 420 Wh kg−1 by cell mass and 834 Wh L−1 by cell volume at room temperature. These findings bring about powerful new degrees of freedom for engineering super ionic conductors.

Suggested Citation

  • Yantao Wang & Hongtao Qu & Bowen Liu & Xiaoju Li & Jiangwei Ju & Jiedong Li & Shu Zhang & Jun Ma & Chao Li & Zhiwei Hu & Chung-Kai Chang & Hwo-Shuenn Sheu & Longfei Cui & Feng Jiang & Ernst R. H. Eck , 2023. "Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35982-7
    DOI: 10.1038/s41467-023-35982-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35982-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35982-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Randau & Dominik A. Weber & Olaf Kötz & Raimund Koerver & Philipp Braun & André Weber & Ellen Ivers-Tiffée & Torben Adermann & Jörn Kulisch & Wolfgang G. Zeier & Felix H. Richter & Jürgen Janek, 2020. "Benchmarking the performance of all-solid-state lithium batteries," Nature Energy, Nature, vol. 5(3), pages 259-270, March.
    2. Rui Wang & Xin Chen & Zhongyuan Huang & Jinlong Yang & Fusheng Liu & Mihai Chu & Tongchao Liu & Chaoqi Wang & Weiming Zhu & Shuankui Li & Shunning Li & Jiaxin Zheng & Jie Chen & Lunhua He & Lei Jin & , 2021. "Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    4. N. Sata & K. Eberman & K. Eberl & J. Maier, 2000. "Mesoscopic fast ion conduction in nanometre-scale planar heterostructures," Nature, Nature, vol. 408(6815), pages 946-949, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Daiwei Wang & Li-Ji Jhang & Rong Kou & Meng Liao & Shiyao Zheng & Heng Jiang & Pei Shi & Guo-Xing Li & Kui Meng & Donghai Wang, 2023. "Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    6. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Sung-Kyun Jung & Hyeokjo Gwon & Hyungsub Kim & Gabin Yoon & Dongki Shin & Jihyun Hong & Changhoon Jung & Ju-Sik Kim, 2022. "Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Mouhamad S. Diallo & Tan Shi & Yaqian Zhang & Xinxing Peng & Imtiaz Shozib & Yan Wang & Lincoln J. Miara & Mary C. Scott & Qingsong Howard Tu & Gerbrand Ceder, 2024. "Effect of solid-electrolyte pellet density on failure of solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Jiaxuan Wang & Feng Hao, 2023. "Experimental Investigations on the Chemo-Mechanical Coupling in Solid-State Batteries and Electrode Materials," Energies, MDPI, vol. 16(3), pages 1-17, January.
    14. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Guanjun Ji & Junxiong Wang & Zheng Liang & Kai Jia & Jun Ma & Zhaofeng Zhuang & Guangmin Zhou & Hui-Ming Cheng, 2023. "Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Tong-Tong Zuo & Raffael Rueß & Ruijun Pan & Felix Walther & Marcus Rohnke & Satoshi Hori & Ryoji Kanno & Daniel Schröder & Jürgen Janek, 2021. "A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Jelena Popovic, 2021. "The importance of electrode interfaces and interphases for rechargeable metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35982-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.