IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31222-6.html
   My bibliography  Save this article

Freezing solute atoms in nanograined aluminum alloys via high-density vacancies

Author

Listed:
  • Shenghua Wu

    (Xi’an Jiaotong University)

  • Hanne S. Soreide

    (Norwegian University of Science and Technology)

  • Bin Chen

    (School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University)

  • Jianjun Bian

    (University of Padova, Via Gradenigo 6/a)

  • Chong Yang

    (Xi’an Jiaotong University)

  • Chunan Li

    (Norwegian University of Science and Technology)

  • Peng Zhang

    (Xi’an Jiaotong University)

  • Pengming Cheng

    (Xi’an Jiaotong University)

  • Jinyu Zhang

    (Xi’an Jiaotong University)

  • Yong Peng

    (School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University)

  • Gang Liu

    (Xi’an Jiaotong University)

  • Yanjun Li

    (Norwegian University of Science and Technology)

  • Hans J. Roven

    (Norwegian University of Science and Technology)

  • Jun Sun

    (Xi’an Jiaotong University)

Abstract

Low-temperature decomposition of supersaturated solid solution into unfavorable intergranular precipitates is a long-standing bottleneck limiting the practical applications of nanograined aluminum alloys that are prepared by severe plastic deformation. Minimizing the vacancy concentration is generally regarded as an effective approach in suppressing the decomposition process. Here we report a counterintuitive strategy to stabilize supersaturated solid solution in nanograined Al-Cu alloys via high-density vacancies in combination with Sc microalloying. By generating a two orders of magnitude higher concentration of vacancies bonded in strong (Cu, Sc, vacancy)-rich atomic complexes, a high thermal stability is achieved in an Al-Cu-Sc alloy that precipitation is nearly suppressed up to ~230 °C. The solute-vacancy complexes also enable the nanograined Al-Cu alloys with higher strength, greater strain hardening capability and ductility. These findings provide perspectives towards the great potentials of solute-vacancy interaction and the development of nanograined alloys with high stability and well-performed mechanical properties.

Suggested Citation

  • Shenghua Wu & Hanne S. Soreide & Bin Chen & Jianjun Bian & Chong Yang & Chunan Li & Peng Zhang & Pengming Cheng & Jinyu Zhang & Yong Peng & Gang Liu & Yanjun Li & Hans J. Roven & Jun Sun, 2022. "Freezing solute atoms in nanograined aluminum alloys via high-density vacancies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31222-6
    DOI: 10.1038/s41467-022-31222-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31222-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31222-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    2. Phillip Dumitraschkewitz & Peter J. Uggowitzer & Stephan S. A. Gerstl & Jörg F. Löffler & Stefan Pogatscher, 2019. "Size-dependent diffusion controls natural aging in aluminium alloys," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. Laure Bourgeois & Yong Zhang & Zezhong Zhang & Yiqiang Chen & Nikhil V. Medhekar, 2020. "Transforming solid-state precipitates via excess vacancies," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Xuefei Chen & Qi Wang & Zhiying Cheng & Mingliu Zhu & Hao Zhou & Ping Jiang & Lingling Zhou & Qiqi Xue & Fuping Yuan & Jing Zhu & Xiaolei Wu & En Ma, 2021. "Direct observation of chemical short-range order in a medium-entropy alloy," Nature, Nature, vol. 592(7856), pages 712-716, April.
    5. Michael P. Moody & Anna V. Ceguerra & Andrew J. Breen & Xiang Yuan Cui & Baptiste Gault & Leigh T. Stephenson & Ross K. W. Marceau & Rebecca C. Powles & Simon P. Ringer, 2014. "Atomically resolved tomography to directly inform simulations for structure–property relationships," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    6. Suihe Jiang & Hui Wang & Yuan Wu & Xiongjun Liu & Honghong Chen & Mengji Yao & Baptiste Gault & Dirk Ponge & Dierk Raabe & Akihiko Hirata & Mingwei Chen & Yandong Wang & Zhaoping Lu, 2017. "Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation," Nature, Nature, vol. 544(7651), pages 460-464, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Lu & Jianchuan Wang & Hongcheng Li & Shenbao Jin & Gang Sha & Jiangbo Lu & Li Wang & Bo Jin & Xinyue Lan & Liya Li & Kai Li & Yong Du, 2023. "Synergy of multiple precipitate/matrix interface structures for a heat resistant high-strength Al alloy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Li & Ye Wei & Zhangwei Wang & Xiaochun Liu & Timoteo Colnaghi & Liuliu Han & Ziyuan Rao & Xuyang Zhou & Liam Huber & Raynol Dsouza & Yilun Gong & Jörg Neugebauer & Andreas Marek & Markus Rampp & S, 2023. "Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Bushra Jabar & Fu Li & Zhuanghao Zheng & Adil Mansoor & Yongbin Zhu & Chongbin Liang & Dongwei Ao & Yuexing Chen & Guangxing Liang & Ping Fan & Weishu Liu, 2021. "Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
    11. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    12. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    14. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    15. Marfoua, Brahim & Lim, Young Soo & Hong, Jisang, 2020. "High thermoelectric performance of two-dimensional α-GeTe bilayer," Energy, Elsevier, vol. 211(C).
    16. Shucai Zhang & Hao Feng & Huabing Li & Zhouhua Jiang & Tao Zhang & Hongchun Zhu & Yue Lin & Wei Zhang & Guoping Li, 2023. "Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    18. Qian Zhang & Ranming Niu & Ying Liu & Jiaxi Jiang & Fan Xu & Xuan Zhang & Julie M. Cairney & Xianghai An & Xiaozhou Liao & Huajian Gao & Xiaoyan Li, 2023. "Room-temperature super-elongation in high-entropy alloy nanopillars," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Jingyuan Yan & Sheng Yin & Mark Asta & Robert O. Ritchie & Jun Ding & Qian Yu, 2022. "Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31222-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.