IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30737-2.html
   My bibliography  Save this article

Extremely confined gap plasmon modes: when nonlocality matters

Author

Listed:
  • Sergejs Boroviks

    (University of Southern Denmark
    Leibniz Institute of Photonic Technology
    Swiss Federal Institute of Technology Lausanne (EPFL))

  • Zhan-Hong Lin

    (Leibniz Institute of Photonic Technology)

  • Vladimir A. Zenin

    (University of Southern Denmark)

  • Mario Ziegler

    (Leibniz Institute of Photonic Technology)

  • Andrea Dellith

    (Leibniz Institute of Photonic Technology)

  • P. A. D. Gonçalves

    (University of Southern Denmark)

  • Christian Wolff

    (University of Southern Denmark)

  • Sergey I. Bozhevolnyi

    (University of Southern Denmark
    University of Southern Denmark)

  • Jer-Shing Huang

    (Leibniz Institute of Photonic Technology
    Friedrich-Schiller-Universität Jena
    Research Center for Applied Sciences, Academia Sinica
    National Yang Ming Chiao Tung University)

  • N. Asger Mortensen

    (University of Southern Denmark
    University of Southern Denmark)

Abstract

Historically, the field of plasmonics has been relying on the framework of classical electrodynamics, with the local-response approximation of material response being applied even when dealing with nanoscale metallic structures. However, when the confinement of electromagnetic radiation approaches atomic scales, mesoscopic effects are anticipated to become observable, e.g., those associated with the nonlocal electrodynamic surface response of the electron gas. Here, we investigate nonlocal effects in propagating gap surface plasmon modes in ultrathin metal–dielectric–metal planar waveguides, exploiting monocrystalline gold flakes separated by atomic-layer-deposited aluminum oxide. We use scanning near-field optical microscopy to directly access the near-field of such confined gap plasmon modes and measure their dispersion relation via their complex-valued propagation constants. We compare our experimental findings with the predictions of the generalized nonlocal optical response theory to unveil signatures of nonlocal damping, which becomes appreciable for few-nanometer-sized dielectric gaps.

Suggested Citation

  • Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30737-2
    DOI: 10.1038/s41467-022-30737-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30737-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30737-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William L. Barnes & Alain Dereux & Thomas W. Ebbesen, 2003. "Surface plasmon subwavelength optics," Nature, Nature, vol. 424(6950), pages 824-830, August.
    2. N. A. Mortensen & S. Raza & M. Wubs & T. Søndergaard & S. I. Bozhevolnyi, 2014. "A generalized non-local optical response theory for plasmonic nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    3. Jonathan A. Scholl & Ai Leen Koh & Jennifer A. Dionne, 2012. "Quantum plasmon resonances of individual metallic nanoparticles," Nature, Nature, vol. 483(7390), pages 421-427, March.
    4. Battulga Munkhbat & Adriana Canales & Betül Küçüköz & Denis G. Baranov & Timur O. Shegai, 2021. "Tunable self-assembled Casimir microcavities and polaritons," Nature, Nature, vol. 597(7875), pages 214-219, September.
    5. Søren Raza & Shima Kadkhodazadeh & Thomas Christensen & Marcel Di Vece & Martijn Wubs & N. Asger Mortensen & Nicolas Stenger, 2015. "Multipole plasmons and their disappearance in few-nanometre silver nanoparticles," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    6. Wenqi Zhu & Ruben Esteban & Andrei G. Borisov & Jeremy J. Baumberg & Peter Nordlander & Henri J. Lezec & Javier Aizpurua & Kenneth B. Crozier, 2016. "Quantum mechanical effects in plasmonic structures with subnanometre gaps," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Aupiais & Romain Grasset & Tingwen Guo & Dmitri Daineka & Javier Briatico & Sarah Houver & Luca Perfetti & Jean-Paul Hugonin & Jean-Jacques Greffet & Yannis Laplace, 2023. "Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yen-Hsiang & Shih, Fu-Yuan & Lee, Ming-Tsang & Lee, Yung-Chun & Chen, Yu-Bin, 2020. "Development of lightweight energy-saving glass and its near-field electromagnetic analysis," Energy, Elsevier, vol. 193(C).
    2. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Hu, Yahong & Zhu, Quanyong, 2017. "New analytic solutions of two-dimensional nonlocal nonlinear media," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 53-61.
    4. Day, Joseph & Senthilarasu, S. & Mallick, Tapas K., 2019. "Improving spectral modification for applications in solar cells: A review," Renewable Energy, Elsevier, vol. 132(C), pages 186-205.
    5. Jiménez-Calvo, Pablo & Caps, Valérie & Keller, Valérie, 2021. "Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Rui Pu & Qiuqiang Zhan & Xingyun Peng & Siying Liu & Xin Guo & Liangliang Liang & Xian Qin & Ziqing Winston Zhao & Xiaogang Liu, 2022. "Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Xiangdong Guo & Chenchen Wu & Shu Zhang & Debo Hu & Shunping Zhang & Qiao Jiang & Xiaokang Dai & Yu Duan & Xiaoxia Yang & Zhipei Sun & Shuang Zhang & Hongxing Xu & Qing Dai, 2023. "Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    9. Georgy A. Ermolaev & Kirill V. Voronin & Adilet N. Toksumakov & Dmitriy V. Grudinin & Ilia M. Fradkin & Arslan Mazitov & Aleksandr S. Slavich & Mikhail K. Tatmyshevskiy & Dmitry I. Yakubovsky & Valent, 2024. "Wandering principal optical axes in van der Waals triclinic materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Zhujing Xu & Peng Ju & Xingyu Gao & Kunhong Shen & Zubin Jacob & Tongcang Li, 2022. "Observation and control of Casimir effects in a sphere-plate-sphere system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Hsin-Cheng Lee & Shich-Chuan Wu & Tien-Chung Yang & Ta-Jen Yen, 2010. "Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure," Energies, MDPI, vol. 3(4), pages 1-19, April.
    12. Yu, Xiyu & Huang, Maoquan & Wang, Xinyu & Sun, Qie & Tang, G.H. & Du, Mu, 2022. "Toward optical selectivity aerogels by plasmonic nanoparticles doping," Renewable Energy, Elsevier, vol. 190(C), pages 741-751.
    13. Giles Allison & Amrita Kumar Sana & Yuta Ogawa & Hidemi Kato & Kosei Ueno & Hiroaki Misawa & Koki Hayashi & Hironori Suzuki, 2021. "A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    14. Katsuaki Tanabe, 2009. "A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures," Energies, MDPI, vol. 2(3), pages 1-27, July.
    15. Marcus Albrechtsen & Babak Vosoughi Lahijani & Rasmus Ellebæk Christiansen & Vy Thi Hoang Nguyen & Laura Nevenka Casses & Søren Engelberth Hansen & Nicolas Stenger & Ole Sigmund & Henri Jansen & Jespe, 2022. "Nanometer-scale photon confinement in topology-optimized dielectric cavities," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Vito Coviello & Denis Badocco & Paolo Pastore & Martina Fracchia & Paolo Ghigna & Alessandro Martucci & Daniel Forrer & Vincenzo Amendola, 2024. "Accurate prediction of the optical properties of nanoalloys with both plasmonic and magnetic elements," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Li, Kun & Huang, Ting-Zhu & Li, Liang & Lanteri, Stéphane, 2019. "A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 128-145.
    18. Ian Aupiais & Romain Grasset & Tingwen Guo & Dmitri Daineka & Javier Briatico & Sarah Houver & Luca Perfetti & Jean-Paul Hugonin & Jean-Jacques Greffet & Yannis Laplace, 2023. "Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30737-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.