Author
Listed:
- MohammadReza Aghdaee
(University of Twente)
- Melissa J. Goodwin
(University of Twente)
- Oluwafemi S. Ojambati
(University of Twente)
Abstract
Metallic nano-objects play crucial roles in diverse fields, including biomedical imaging, nanomedicine, spectroscopy, and photocatalysis. Nano-objects smaller than 15 nm exhibit extremely low scattering cross-sections, posing a significant challenge for optical detection. An approach to enhance optical detection is to exploit nonlinearity of strong coupling regime, especially for elastic scattering, which is universal to all objects. However, there is still no observation of the strong coupling of elastic light scattering from nano-objects. Here, we demonstrate the strong coupling of elastic light scattering in self-assembled plasmonic nanocavities formed between a gold nanoprobe and a gold film. We employ this technique to detect individual objects with diameters down to 1.8 nm. The resonant mode of the nano-object in the nanocavity environment strongly couples with the nanocavity mode, revealing anti-crossing scattering modes under dark-field spectroscopy. The experimental result agrees with numerical calculations, which we use to extend this technique to other metals. Furthermore, our results show that scattering cross-section ratio of the nano-object scales with the electric field to fourth power, similar to surface-enhanced Raman spectroscopy. This work establishes a new possibility of elastic strong coupling and demonstrates its applicability for observing small, non-fluorescent, Raman inactive sub-15 nm objects, complementary to existing microscopes.
Suggested Citation
MohammadReza Aghdaee & Melissa J. Goodwin & Oluwafemi S. Ojambati, 2025.
"Optical detection of single sub-15 nm objects using elastic scattering strong coupling,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63380-8
DOI: 10.1038/s41467-025-63380-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63380-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.