IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63380-8.html
   My bibliography  Save this article

Optical detection of single sub-15 nm objects using elastic scattering strong coupling

Author

Listed:
  • MohammadReza Aghdaee

    (University of Twente)

  • Melissa J. Goodwin

    (University of Twente)

  • Oluwafemi S. Ojambati

    (University of Twente)

Abstract

Metallic nano-objects play crucial roles in diverse fields, including biomedical imaging, nanomedicine, spectroscopy, and photocatalysis. Nano-objects smaller than 15 nm exhibit extremely low scattering cross-sections, posing a significant challenge for optical detection. An approach to enhance optical detection is to exploit nonlinearity of strong coupling regime, especially for elastic scattering, which is universal to all objects. However, there is still no observation of the strong coupling of elastic light scattering from nano-objects. Here, we demonstrate the strong coupling of elastic light scattering in self-assembled plasmonic nanocavities formed between a gold nanoprobe and a gold film. We employ this technique to detect individual objects with diameters down to 1.8 nm. The resonant mode of the nano-object in the nanocavity environment strongly couples with the nanocavity mode, revealing anti-crossing scattering modes under dark-field spectroscopy. The experimental result agrees with numerical calculations, which we use to extend this technique to other metals. Furthermore, our results show that scattering cross-section ratio of the nano-object scales with the electric field to fourth power, similar to surface-enhanced Raman spectroscopy. This work establishes a new possibility of elastic strong coupling and demonstrates its applicability for observing small, non-fluorescent, Raman inactive sub-15 nm objects, complementary to existing microscopes.

Suggested Citation

  • MohammadReza Aghdaee & Melissa J. Goodwin & Oluwafemi S. Ojambati, 2025. "Optical detection of single sub-15 nm objects using elastic scattering strong coupling," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63380-8
    DOI: 10.1038/s41467-025-63380-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63380-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63380-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. A. Mortensen & S. Raza & M. Wubs & T. Søndergaard & S. I. Bozhevolnyi, 2014. "A generalized non-local optical response theory for plasmonic nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. Jonathan A. Scholl & Ai Leen Koh & Jennifer A. Dionne, 2012. "Quantum plasmon resonances of individual metallic nanoparticles," Nature, Nature, vol. 483(7390), pages 421-427, March.
    3. Shu Hu & Junyang Huang & Rakesh Arul & Ana Sánchez-Iglesias & Yuling Xiong & Luis M. Liz-Marzán & Jeremy J. Baumberg, 2024. "Robust consistent single quantum dot strong coupling in plasmonic nanocavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Jinlong Zhu & Aditi Udupa & Lynford L. Goddard, 2020. "Visualizable detection of nanoscale objects using anti-symmetric excitation and non-resonance amplification," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Rohit Chikkaraddy & Bart de Nijs & Felix Benz & Steven J. Barrow & Oren A. Scherman & Edina Rosta & Angela Demetriadou & Peter Fox & Ortwin Hess & Jeremy J. Baumberg, 2016. "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature, Nature, vol. 535(7610), pages 127-130, July.
    6. Jiajia Zhou & Alexey I. Chizhik & Steven Chu & Dayong Jin, 2020. "Single-particle spectroscopy for functional nanomaterials," Nature, Nature, vol. 579(7797), pages 41-50, March.
    7. Yi Yang & Di Zhu & Wei Yan & Akshay Agarwal & Mengjie Zheng & John D. Joannopoulos & Philippe Lalanne & Thomas Christensen & Karl K. Berggren & Marin Soljačić, 2019. "A general theoretical and experimental framework for nanoscale electromagnetism," Nature, Nature, vol. 576(7786), pages 248-252, December.
    8. K. Hennessy & A. Badolato & M. Winger & D. Gerace & M. Atatüre & S. Gulde & S. Fält & E. L. Hu & A. Imamoğlu, 2007. "Quantum nature of a strongly coupled single quantum dot–cavity system," Nature, Nature, vol. 445(7130), pages 896-899, February.
    9. A. Shalabney & J. George & J. Hutchison & G. Pupillo & C. Genet & T. W. Ebbesen, 2015. "Coherent coupling of molecular resonators with a microcavity mode," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    10. Renming Liu & Ming Geng & Jindong Ai & Xinyi Fan & Zhixiang Liu & Yu-Wei Lu & Yanmin Kuang & Jing-Feng Liu & Lijun Guo & Lin Wu, 2024. "Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Juan B. Pérez-Sánchez & Joel Yuen-Zhou, 2025. "Radiative pumping vs vibrational relaxation of molecular polaritons: a bosonic mapping approach," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ian Aupiais & Romain Grasset & Tingwen Guo & Dmitri Daineka & Javier Briatico & Sarah Houver & Luca Perfetti & Jean-Paul Hugonin & Jean-Jacques Greffet & Yannis Laplace, 2023. "Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Zhengyi Lu & Jiamin Ji & Haiming Ye & Hao Zhang & Shunping Zhang & Hongxing Xu, 2024. "Quantifying the ultimate limit of plasmonic near-field enhancement," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2021. "Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Danqing Wang & Zheyu Lu & Sorren Warkander & Niharika Gupta & Qingjun Wang & Penghong Ci & Ruihan Guo & Jiachen Li & Ali Javey & Jie Yao & Feng Wang & Junqiao Wu, 2025. "Long-range optical coupling with epsilon-near-zero materials," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    13. Jinshu Huang & Langping Tu & Haozhang Huang & Haopeng Wei & Qinyuan Zhang & Bo Zhou, 2024. "Manipulating energy migration in nanoparticles toward tunable photochromic upconversion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Shuai-Peng Wang & Alberto Mercurio & Alessandro Ridolfo & Yuqing Wang & Mo Chen & Wenyan Wang & Yulong Liu & Huanying Sun & Tiefu Li & Franco Nori & Salvatore Savasta & J. Q. You, 2025. "Strong coupling between a single-photon and a two-photon Fock state," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Hu, Yahong & Zhu, Quanyong, 2017. "New analytic solutions of two-dimensional nonlocal nonlinear media," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 53-61.
    16. Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Connor K. Terry Weatherly & Justin Provazza & Emily A. Weiss & Roel Tempelaar, 2023. "Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63380-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.