IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30125-w.html
   My bibliography  Save this article

Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria

Author

Listed:
  • Yuqian Qiao

    (Tianjin University
    Peking University)

  • Yingde Xu

    (Tianjin University)

  • Xiangmei Liu

    (Hebei University of Technology)

  • Yufeng Zheng

    (Peking University)

  • Bo Li

    (Xi’an Jiaotong University)

  • Yong Han

    (Xi’an Jiaotong University)

  • Zhaoyang Li

    (Tianjin University)

  • Kelvin Wai Kwok Yeung

    (The University of Hong Kong)

  • Yanqin Liang

    (Tianjin University)

  • Shengli Zhu

    (Tianjin University)

  • Zhenduo Cui

    (Tianjin University)

  • Shuilin Wu

    (Tianjin University
    Peking University)

Abstract

Owing to the existence of the outer membrane barrier, most antibacterial agents cannot penetrate Gram-negative bacteria and are ineffective. Here, we report a general method for narrow-spectrum antibacterial Garcinia nanoparticles that can only be effective to kill Gram-positive bacteria, to effectively eliminate Gram-negative bacteria by creating transient nanopores in bacterial outer membrane to induce drug entry under microwaves assistance. In vitro, under 15 min of microwaves irradiation, the antibacterial efficiency of Garcinia nanoparticles against Escherichia coli can be enhanced from 6.73% to 99.48%. In vivo, MV-assisted GNs can effectively cure mice with bacterial pneumonia. The combination of molecular dynamics simulation and experimental results reveal that the robust anti-E. coli effectiveness of Garcinia nanoparticles is attributed to the synergy of Garcinia nanoparticles and microwaves. This work presents a strategy for effectively treating both Gram-negative and Gram-positive bacteria co-infected pneumonia using herbal medicine nanoparticles with MV assistance as an exogenous antibacterial auxiliary.

Suggested Citation

  • Yuqian Qiao & Yingde Xu & Xiangmei Liu & Yufeng Zheng & Bo Li & Yong Han & Zhaoyang Li & Kelvin Wai Kwok Yeung & Yanqin Liang & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2022. "Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30125-w
    DOI: 10.1038/s41467-022-30125-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30125-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30125-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee Schnaider & Sayanti Brahmachari & Nathan W. Schmidt & Bruk Mensa & Shira Shaham-Niv & Darya Bychenko & Lihi Adler-Abramovich & Linda J. W. Shimon & Sofiya Kolusheva & William F. DeGrado & Ehud Gaz, 2017. "Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Enrique R. Rojas & Gabriel Billings & Pascal D. Odermatt & George K. Auer & Lillian Zhu & Amanda Miguel & Fred Chang & Douglas B. Weibel & Julie A. Theriot & Kerwyn Casey Huang, 2018. "The outer membrane is an essential load-bearing element in Gram-negative bacteria," Nature, Nature, vol. 559(7715), pages 617-621, July.
    3. Hu, Ying & Jia, Guozhu, 2021. "Non-thermal effect of microwave in supercritical water: A molecular dynamics simulation study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    4. Jianfang Li & Zhaoyang Li & Xiangmei Liu & Changyi Li & Yufeng Zheng & Kelvin Wai Kwok Yeung & Zhenduo Cui & Yanqin Liang & Shengli Zhu & Wenbin Hu & Yajun Qi & Tianjin Zhang & Xianbao Wang & Shuilin , 2021. "Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yuqian Qiao & Xiangmei Liu & Bo Li & Yong Han & Yufeng Zheng & Kelvin Wai Kwok Yeung & Changyi Li & Zhenduo Cui & Yanqin Liang & Zhaoyang Li & Shengli Zhu & Xianbao Wang & Shuilin Wu, 2020. "Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Michelle F. Richter & Bryon S. Drown & Andrew P. Riley & Alfredo Garcia & Tomohiro Shirai & Riley L. Svec & Paul J. Hergenrother, 2017. "Predictive compound accumulation rules yield a broad-spectrum antibiotic," Nature, Nature, vol. 545(7654), pages 299-304, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Yadid M. Algavi & Elhanan Borenstein, 2023. "A data-driven approach for predicting the impact of drugs on the human microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Chuang Yang & Yao Luo & Hao Shen & Min Ge & Jin Tang & Qiaojie Wang & Han Lin & Jianlin Shi & Xianlong Zhang, 2022. "Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Dmitry Leshchiner & Federico Rosconi & Bharathi Sundaresh & Emily Rudmann & Luisa Maria Nieto Ramirez & Andrew T. Nishimoto & Stephen J. Wood & Bimal Jana & Noemí Buján & Kaicheng Li & Jianmin Gao & M, 2022. "A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Han Gao & Yongmao Jiang & Lihua Wang & Guandong Wang & Wenqian Hu & Ling Dong & Sibao Wang, 2023. "Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Irina V. Mikheyeva & Jiawei Sun & Kerwyn Casey Huang & Thomas J. Silhavy, 2023. "Mechanism of outer membrane destabilization by global reduction of protein content," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Augustinas Silale & Yiling Zhu & Jerzy Witwinowski & Robert E. Smith & Kahlan E. Newman & Satya P. Bhamidimarri & Arnaud Baslé & Syma Khalid & Christophe Beloin & Simonetta Gribaldo & Bert Berg, 2023. "Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Xiangfeng Lai & Mei-Ling Han & Yue Ding & Seong Hoong Chow & Anton P. Brun & Chun-Ming Wu & Phillip J. Bergen & Jhih-hang Jiang & Hsien-Yi Hsu & Benjamin W. Muir & Jacinta White & Jiangning Song & Jia, 2022. "A polytherapy based approach to combat antimicrobial resistance using cubosomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Yanzhang Li & Hongyu Wang & Yan Li & Huan Ye & Yanan Zhang & Rongzhang Yin & Haoning Jia & Bingxu Hou & Changqiu Wang & Hongrui Ding & Xiangzhi Bai & Anhuai Lu, 2023. "Electron transfer rules of minerals under pressure informed by machine learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jinyong Chen & Tanchen Ren & Lan Xie & Haochang Hu & Xu Li & Miribani Maitusong & Xuhao Zhou & Wangxing Hu & Dilin Xu & Yi Qian & Si Cheng & Kaixiang Yu & Jian`an Wang & Xianbao Liu, 2024. "Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Henri Voedts & Sean P. Kennedy & Guennadi Sezonov & Michel Arthur & Jean-Emmanuel Hugonnet, 2022. "Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Johannes Zuegg, 2018. "Towards a Single Model for Antibiotics against Gram-Negative Bacteria," Novel Approaches in Drug Designing & Development, Juniper Publishers Inc., vol. 4(3), pages 82-87, December.
    13. Xiaoyang Pan & Xuhui Yang & Maoqing Yu & Xiaoxiao Lu & Hao Kang & Min-Quan Yang & Qingrong Qian & Xiaojing Zhao & Shijing Liang & Zhenfeng Bian, 2023. "2D MXenes polar catalysts for multi-renewable energy harvesting applications," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Dennis Y. Liu & Laura Phillips & Darryl M. Wilson & Kelly M. Fulton & Susan M. Twine & Alex Wong & Roger G. Linington, 2023. "Collateral sensitivity profiling in drug-resistant Escherichia coli identifies natural products suppressing cephalosporin resistance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30125-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.