IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30017-z.html
   My bibliography  Save this article

Leveraging omic features with F3UTER enables identification of unannotated 3’UTRs for synaptic genes

Author

Listed:
  • Siddharth Sethi

    (Astex Pharmaceuticals
    Institute of Neurology, University College London)

  • David Zhang

    (Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London)

  • Sebastian Guelfi

    (Institute of Neurology, University College London
    Verge Genomics)

  • Zhongbo Chen

    (Institute of Neurology, University College London
    Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London
    NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London)

  • Sonia Garcia-Ruiz

    (Institute of Neurology, University College London
    Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London
    NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London)

  • Emmanuel O. Olagbaju

    (Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London)

  • Mina Ryten

    (Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London
    NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London)

  • Harpreet Saini

    (Astex Pharmaceuticals)

  • Juan A. Botia

    (Institute of Neurology, University College London
    University of Murcia)

Abstract

There is growing evidence for the importance of 3’ untranslated region (3’UTR) dependent regulatory processes. However, our current human 3’UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3’UTRs. We identify unannotated 3’UTRs associated with 1,563 genes across 39 human tissues, with the greatest abundance found in the brain. These unannotated 3’UTRs are significantly enriched for RNA binding protein (RBP) motifs and exhibit high human lineage-specificity. We find that brain-specific unannotated 3’UTRs are enriched for the binding motifs of important neuronal RBPs such as TARDBP and RBFOX1, and their associated genes are involved in synaptic function. Our data is shared through an online resource F3UTER ( https://astx.shinyapps.io/F3UTER/ ). Overall, our data improves 3’UTR annotation and provides additional insights into the mRNA-RBP interactome in the human brain, with implications for our understanding of neurological and neurodevelopmental diseases.

Suggested Citation

  • Siddharth Sethi & David Zhang & Sebastian Guelfi & Zhongbo Chen & Sonia Garcia-Ruiz & Emmanuel O. Olagbaju & Mina Ryten & Harpreet Saini & Juan A. Botia, 2022. "Leveraging omic features with F3UTER enables identification of unannotated 3’UTRs for synaptic genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30017-z
    DOI: 10.1038/s41467-022-30017-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30017-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30017-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Irtisha Singh & Shih-Han Lee & Adam S. Sperling & Mehmet K. Samur & Yu-Tzu Tai & Mariateresa Fulciniti & Nikhil C. Munshi & Christine Mayr & Christina S. Leslie, 2018. "Widespread intronic polyadenylation diversifies immune cell transcriptomes," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    2. Mitchell Guttman & Ido Amit & Manuel Garber & Courtney French & Michael F. Lin & David Feldser & Maite Huarte & Or Zuk & Bryce W. Carey & John P. Cassady & Moran N. Cabili & Rudolf Jaenisch & Tarjei S, 2009. "Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals," Nature, Nature, vol. 458(7235), pages 223-227, March.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Zheng Xia & Lawrence A. Donehower & Thomas A. Cooper & Joel R. Neilson & David A. Wheeler & Eric J. Wagner & Wei Li, 2014. "Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    5. Ryan Lusk & Evan Stene & Farnoush Banaei-Kashani & Boris Tabakoff & Katerina Kechris & Laura M. Saba, 2021. "Aptardi predicts polyadenylation sites in sample-specific transcriptomes using high-throughput RNA sequencing and DNA sequence," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Debashish Ray & Hilal Kazan & Kate B. Cook & Matthew T. Weirauch & Hamed S. Najafabadi & Xiao Li & Serge Gueroussov & Mihai Albu & Hong Zheng & Ally Yang & Hong Na & Manuel Irimia & Leah H. Matzat & R, 2013. "A compendium of RNA-binding motifs for decoding gene regulation," Nature, Nature, vol. 499(7457), pages 172-177, July.
    7. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaochuan Liu & Hao Chen & Zekun Li & Xiaoxiao Yang & Wen Jin & Yuting Wang & Jian Zheng & Long Li & Chenghao Xuan & Jiapei Yuan & Yang Yang, 2024. "InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    3. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    4. Jun Wang & Jinyong Huang & Yunlong Hu & Qianwen Guo & Shasha Zhang & Jinglin Tian & Yanqin Niu & Ling Ji & Yuzhong Xu & Peijun Tang & Yaqin He & Yuna Wang & Shuya Zhang & Hao Yang & Kang Kang & Xinchu, 2024. "Terminal modifications independent cell-free RNA sequencing enables sensitive early cancer detection and classification," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Erik Duijvelaar & Jack Gisby & James E. Peters & Harm Jan Bogaard & Jurjan Aman, 2024. "Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    7. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Huijuan Feng & Xiang-Jun Lu & Suvrajit Maji & Linxi Liu & Dmytro Ustianenko & Noam D. Rudnick & Chaolin Zhang, 2024. "Structure-based prediction and characterization of photo-crosslinking in native protein–RNA complexes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Patrick C Eschenfeldt & Uri Kartoun & Curtis R Heberle & Chung Yin Kong & Norman S Nishioka & Kenney Ng & Sagar Kamarthi & Chin Hur, 2018. "Analysis of factors associated with extended recovery time after colonoscopy," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    10. Rachel Sippy & Daniel F Farrell & Daniel A Lichtenstein & Ryan Nightingale & Megan A Harris & Joseph Toth & Paris Hantztidiamantis & Nicholas Usher & Cinthya Cueva Aponte & Julio Barzallo Aguilar & An, 2020. "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(2), pages 1-20, February.
    11. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    12. Joshua P White & Simon Dennis & Martin Tomko & Jessica Bell & Stephan Winter, 2021. "Paths to social licence for tracking-data analytics in university research and services," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    13. Jack S. Gisby & Norzawani B. Buang & Artemis Papadaki & Candice L. Clarke & Talat H. Malik & Nicholas Medjeral-Thomas & Damiola Pinheiro & Paige M. Mortimer & Shanice Lewis & Eleanor Sandhu & Stephen , 2022. "Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    14. Jimmy Semakula & Rene A. Corner-Thomas & Stephen T. Morris & Hugh T. Blair & Paul R. Kenyon, 2021. "Application of Machine Learning Algorithms to Predict Body Condition Score from Liveweight Records of Mature Romney Ewes," Agriculture, MDPI, vol. 11(2), pages 1-20, February.
    15. A. Jiran Meitei & Akanksha Saini & Bibhuti Bhusan Mohapatra & Kh. Jitenkumar Singh, 2022. "Predicting child anaemia in the North-Eastern states of India: a machine learning approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2949-2962, December.
    16. Schroeders, Ulrich & Watrin, Luc & Wilhelm, Oliver, 2021. "Age-related nuances in knowledge assessment," Intelligence, Elsevier, vol. 85(C).
    17. Salamalikis, Vasileios & Tzoumanikas, Panayiotis & Argiriou, Athanassios A. & Kazantzidis, Andreas, 2022. "Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 92-106.
    18. Sabri Boughorbel & Rashid Al-Ali & Naser Elkum, 2016. "Model Comparison for Breast Cancer Prognosis Based on Clinical Data," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-15, January.
    19. Timofey A. Karginov & Antoine Ménoret & Anthony T. Vella, 2022. "Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Michimasa Fujiogi & Yoshihiko Raita & Marcos Pérez-Losada & Robert J. Freishtat & Juan C. Celedón & Jonathan M. Mansbach & Pedro A. Piedra & Zhaozhong Zhu & Carlos A. Camargo & Kohei Hasegawa, 2022. "Integrated relationship of nasopharyngeal airway host response and microbiome associates with bronchiolitis severity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30017-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.