IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28639-4.html
   My bibliography  Save this article

Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications

Author

Listed:
  • Maryam A. Y. Al-Nesf

    (Hamad General Hospital, Hamad Medical Corporation
    Royal Free Campus, University College London)

  • Houari B. Abdesselem

    (Hamad Bin Khalifa University, Qatar Foundation)

  • Ilham Bensmail

    (Hamad Bin Khalifa University, Qatar Foundation)

  • Shahd Ibrahim

    (Hamad General Hospital, Hamad Medical Corporation)

  • Walaa A. H. Saeed

    (Hamad General Hospital, Hamad Medical Corporation)

  • Sara S. I. Mohammed

    (Hamad General Hospital, Hamad Medical Corporation)

  • Almurtada Razok

    (Hamad General Hospital, Hamad Medical Corporation)

  • Hashim Alhussain

    (Qatar University)

  • Reham M. A. Aly

    (Qatar University)

  • Muna Al Maslamani

    (Hamad Medical Corporation)

  • Khalid Ouararhni

    (Hamad Bin Khalifa University, Qatar Foundation)

  • Mohamad Y. Khatib

    (Hezm Mebairek General Hospital, Hamad Medical Corporation)

  • Ali Ait Hssain

    (Hamad General Hospital, Hamad Medical Corporation)

  • Ali S. Omrani

    (Hamad Medical Corporation)

  • Saad Al-Kaabi

    (Hamad General Hospital, Hamad Medical Corporation)

  • Abdullatif Al Khal

    (Hamad Medical Corporation)

  • Asmaa A. Al-Thani

    (Qatar University)

  • Waseem Samsam

    (Anti-Doping Laboratory Qatar)

  • Abdulaziz Farooq

    (Aspetar Hospital, Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence)

  • Jassim Al-Suwaidi

    (Hamad General Hospital, Hamad Medical Corporation)

  • Mohammed Al-Maadheed

    (Royal Free Campus, University College London
    Anti-Doping Laboratory Qatar)

  • Heba H. Al-Siddiqi

    (Hamad Bin Khalifa University, Qatar Foundation)

  • Alexandra E. Butler

    (Hamad Bin Khalifa University, Qatar Foundation
    Royal College of Surgeons of Ireland in Bahrain)

  • Julie V. Decock

    (Hamad Bin Khalifa University, Qatar Foundation
    Hamad Bin Khalifa University, Qatar Foundation)

  • Vidya Mohamed-Ali

    (Royal Free Campus, University College London
    Anti-Doping Laboratory Qatar)

  • Fares Al-Ejeh

    (Hamad Bin Khalifa University, Qatar Foundation
    Hamad Bin Khalifa University, Qatar Foundation
    University of Queensland)

Abstract

COVID-19 complications still present a huge burden on healthcare systems and warrant predictive risk models to triage patients and inform early intervention. Here, we profile 893 plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy controls, and show that 375 proteins are differentially expressed in the plasma of severe COVID-19 patients. These differentially expressed plasma proteins are implicated in the pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe complications. Based on the plasma proteomics and clinical lab tests, we also report a 12-plasma protein signature and a model of seven routine clinical tests that validate in an independent cohort as early risk predictors of COVID-19 severity and patient survival. The risk predictors and candidate drugs described in our study can be used and developed for personalized management of SARS-CoV-2 infected patients.

Suggested Citation

  • Maryam A. Y. Al-Nesf & Houari B. Abdesselem & Ilham Bensmail & Shahd Ibrahim & Walaa A. H. Saeed & Sara S. I. Mohammed & Almurtada Razok & Hashim Alhussain & Reham M. A. Aly & Muna Al Maslamani & Khal, 2022. "Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28639-4
    DOI: 10.1038/s41467-022-28639-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28639-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28639-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Yvan Devaux & Lu Zhang & Andrew I. Lumley & Kanita Karaduzovic-Hadziabdic & Vincent Mooser & Simon Rousseau & Muhammad Shoaib & Venkata Satagopam & Muhamed Adilovic & Prashant Kumar Srivastava & Costa, 2024. "Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    6. Yang Zhao & Denise Gorse, 2024. "Earthquake prediction from seismic indicators using tree-based ensemble learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2283-2309, February.
    7. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    9. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    10. Baihan Wang & Alfred Pozarickij & Mohsen Mazidi & Neil Wright & Pang Yao & Saredo Said & Andri Iona & Christiana Kartsonaki & Hannah Fry & Kuang Lin & Yiping Chen & Huaidong Du & Daniel Avery & Dan Sc, 2025. "Comparative studies of 2168 plasma proteins measured by two affinity-based platforms in 4000 Chinese adults," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    12. repec:plo:pone00:0185380 is not listed on IDEAS
    13. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    14. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    16. Samuel Asante Gyamerah & Ning Cai, 2021. "Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on Technical Indicators, Variational Mode Decomposition, and Support Vector Regression," Complexity, Hindawi, vol. 2021, pages 1-15, December.
    17. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    18. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    19. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    20. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    21. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28639-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.