IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26753-3.html
   My bibliography  Save this article

Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites

Author

Listed:
  • Yajie Yan

    (Fudan University)

  • Yingguo Yang

    (Shanghai Advanced Research Institute & Chinese Academy of Sciences)

  • Mingli Liang

    (Technical University of Denmark)

  • Mohamed Abdellah

    (Lund University)

  • Tõnu Pullerits

    (Lund University)

  • Kaibo Zheng

    (Technical University of Denmark
    Lund University)

  • Ziqi Liang

    (Fudan University)

Abstract

Two-dimensional halide perovskites (2D PVSKs) have drawn tremendous attentions owing to their outstanding ambient stability. However, the random orientation of layered crystals severely impedes the out-of-plane carrier transport and limits the solar cell performance. An in-depth understanding coupled with an effective control of the crystallization in 2D PVSKs is the crux for highly efficient and durable devices. In this contribution, we accidentally discovered that the crystallization of 2D PVSKs can be effectively regulated by so-called ′intermittent spin-coating (ISC)′ process. Combined analyses of in(ex)-situ grazing-incidence wide-angle X-ray scattering with time-of-flight secondary ion mass spectrometry distinguish the interface initialized bottom-up crystallization upon ISC treatment from the bi-directional one in the conventional spin-coating process, which results in significantly enhanced crystal orientation and thus facilitated carrier transport as confirmed by both electrical measurements and ultrafast spectroscopies. As a result, the p-i-n architecture planar solar cells based on ISC fabricated paradigm PEA2MA3Pb4I13 deliver a respectable efficiency of 11.2% without any treatment, which is three-fold improvement over their spin-coated counterparts and can be further boosted up to 14.0% by NH4Cl addition, demonstrating the compatibility of ISC method with other film optimization strategies.

Suggested Citation

  • Yajie Yan & Yingguo Yang & Mingli Liang & Mohamed Abdellah & Tõnu Pullerits & Kaibo Zheng & Ziqi Liang, 2021. "Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26753-3
    DOI: 10.1038/s41467-021-26753-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26753-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26753-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhaolai Chen & Qingfeng Dong & Ye Liu & Chunxiong Bao & Yanjun Fang & Yun Lin & Shi Tang & Qi Wang & Xun Xiao & Yang Bai & Yehao Deng & Jinsong Huang, 2017. "Thin single crystal perovskite solar cells to harvest below-bandgap light absorption," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. Alexander Z. Chen & Michelle Shiu & Jennifer H. Ma & Matthew R. Alpert & Depei Zhang & Benjamin J. Foley & Detlef-M. Smilgies & Seung-Hun Lee & Joshua J. Choi, 2018. "Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    4. Cheng Bi & Qi Wang & Yuchuan Shao & Yongbo Yuan & Zhengguo Xiao & Jinsong Huang, 2015. "Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Cheng-Chieh Lin & Shing-Jong Huang & Pei-Hao Wu & Tzu-Pei Chen & Chih-Ying Huang & Ying-Chiao Wang & Po-Tuan Chen & Denitsa Radeva & Ognyan Petrov & Vladimir M. Gelev & Raman Sankar & Chia-Chun Chen &, 2022. "Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Shunran Li & Xian Xu & Conrad A. Kocoj & Chenyu Zhou & Yanyan Li & Du Chen & Joseph A. Bennett & Sunhao Liu & Lina Quan & Suchismita Sarker & Mingzhao Liu & Diana Y. Qiu & Peijun Guo, 2024. "Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Yiyang Gong & Shuai Yue & Yin Liang & Wenna Du & Tieyuan Bian & Chuanxiu Jiang & Xiaotian Bao & Shuai Zhang & Mingzhu Long & Guofu Zhou & Jun Yin & Shibin Deng & Qing Zhang & Bo Wu & Xinfeng Liu, 2024. "Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden−Popper perovskites by anchoring the organic cation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xixiang Zhu & Liping Peng & Jinpeng Li & Haomiao Yu & Yulin Xie, 2021. "Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation," Energies, MDPI, vol. 14(21), pages 1-10, November.
    10. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Shoieb Shaik & Ziyou Zhou & Zhongliang Ouyang & Rebecca Han & Dawen Li, 2021. "Polymer Additive Assisted Fabrication of Compact and Ultra-Smooth Perovskite Thin Films with Fast Lamp Annealing," Energies, MDPI, vol. 14(9), pages 1-10, May.
    12. Yurou Zhang & Miaoqiang Lyu & Tengfei Qiu & Ekyu Han & Il Ku Kim & Min-Cherl Jung & Yun Hau Ng & Jung-Ho Yun & Lianzhou Wang, 2020. "Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches," Energies, MDPI, vol. 13(16), pages 1-27, August.
    13. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Thibault Lemercier & Lara Perrin & Emilie Planès & Solenn Berson & Lionel Flandin, 2020. "A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells," Energies, MDPI, vol. 13(15), pages 1-18, July.
    15. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    16. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Mohamed M. H. Desoky & Matteo Bonomo & Roberto Buscaino & Andrea Fin & Guido Viscardi & Claudia Barolo & Pierluigi Quagliotto, 2021. "Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships," Energies, MDPI, vol. 14(8), pages 1-49, April.
    18. Liangliang Min & Haoxuan Sun & Linqi Guo & Meng Wang & Fengren Cao & Jun Zhong & Liang Li, 2024. "Frequency-selective perovskite photodetector for anti-interference optical communications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Takeo Oku & Satsuki Kandori & Masaya Taguchi & Atsushi Suzuki & Masanobu Okita & Satoshi Minami & Sakiko Fukunishi & Tomoharu Tachikawa, 2020. "Polysilane-Inserted Methylammonium Lead Iodide Perovskite Solar Cells Doped with Formamidinium and Potassium," Energies, MDPI, vol. 13(18), pages 1-11, September.
    20. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26753-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.