IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26613-0.html
   My bibliography  Save this article

Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death

Author

Listed:
  • Florian J. Bock

    (Cancer Research UK Beatson Institute
    University of Glasgow
    Maastricht University)

  • Egor Sedov

    (Technion Israel Institute of Technology)

  • Elle Koren

    (Technion Israel Institute of Technology)

  • Anna L. Koessinger

    (Cancer Research UK Beatson Institute
    University of Glasgow)

  • Catherine Cloix

    (Cancer Research UK Beatson Institute
    University of Glasgow)

  • Désirée Zerbst

    (Cancer Research UK Beatson Institute
    University of Glasgow)

  • Dimitris Athineos

    (Cancer Research UK Beatson Institute)

  • Jayanthi Anand

    (Cancer Research UK Beatson Institute)

  • Kirsteen J. Campbell

    (Cancer Research UK Beatson Institute
    University of Glasgow)

  • Karen Blyth

    (Cancer Research UK Beatson Institute
    University of Glasgow)

  • Yaron Fuchs

    (Technion Israel Institute of Technology)

  • Stephen W. G. Tait

    (Cancer Research UK Beatson Institute
    University of Glasgow)

Abstract

Damaged or superfluous cells are typically eliminated by apoptosis. Although apoptosis is a cell-autonomous process, apoptotic cells communicate with their environment in different ways. Here we describe a mechanism whereby cells under apoptotic stress can promote survival of neighbouring cells. We find that upon apoptotic stress, cells release the growth factor FGF2, leading to MEK-ERK-dependent transcriptional upregulation of pro-survival BCL-2 proteins in a non-cell autonomous manner. This transient upregulation of pro-survival BCL-2 proteins protects neighbouring cells from apoptosis. Accordingly, we find in certain cancer types a correlation between FGF-signalling, BCL-2 expression and worse prognosis. In vivo, upregulation of MCL-1 occurs in an FGF-dependent manner during skin repair, which regulates healing dynamics. Importantly, either co-treatment with FGF-receptor inhibitors or removal of apoptotic stress restores apoptotic sensitivity to cytotoxic therapy and delays wound healing. These data reveal a pathway by which cells under apoptotic stress can increase resistance to cell death in surrounding cells. Beyond mediating cytotoxic drug resistance, this process also provides a potential link between tissue damage and repair.

Suggested Citation

  • Florian J. Bock & Egor Sedov & Elle Koren & Anna L. Koessinger & Catherine Cloix & Désirée Zerbst & Dimitris Athineos & Jayanthi Anand & Kirsteen J. Campbell & Karen Blyth & Yaron Fuchs & Stephen W. G, 2021. "Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26613-0
    DOI: 10.1038/s41467-021-26613-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26613-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26613-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven Lohard & Nathalie Bourgeois & Laurent Maillet & Fabien Gautier & Aurélie Fétiveau & Hamza Lasla & Frédérique Nguyen & Céline Vuillier & Alison Dumont & Agnès Moreau-Aubry & Morgane Frapin & Lau, 2020. "STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Mariaceleste Aragona & Sophie Dekoninck & Steffen Rulands & Sandrine Lenglez & Guilhem Mascré & Benjamin D. Simons & Cédric Blanpain, 2017. "Defining stem cell dynamics and migration during wound healing in mouse skin epidermis," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    3. Jonathan Lopez & Margaux Bessou & Joel S. Riley & Evangelos Giampazolias & Franziska Todt & Tony Rochegüe & Andrew Oberst & Douglas R. Green & Frank Edlich & Gabriel Ichim & Stephen W. G. Tait, 2016. "Mito-priming as a method to engineer Bcl-2 addiction," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    4. Alessandro De Simone & Maya N. Evanitsky & Luke Hayden & Ben D. Cox & Julia Wang & Valerie A. Tornini & Jianhong Ou & Anna Chao & Kenneth D. Poss & Stefano Di Talia, 2021. "Control of osteoblast regeneration by a train of Erk activity waves," Nature, Nature, vol. 590(7844), pages 129-133, February.
    5. Tilman Oltersdorf & Steven W. Elmore & Alexander R. Shoemaker & Robert C. Armstrong & David J. Augeri & Barbara A. Belli & Milan Bruncko & Thomas L. Deckwerth & Jurgen Dinges & Philip J. Hajduk & Mary, 2005. "An inhibitor of Bcl-2 family proteins induces regression of solid tumours," Nature, Nature, vol. 435(7042), pages 677-681, June.
    6. András Kotschy & Zoltán Szlavik & James Murray & James Davidson & Ana Leticia Maragno & Gaëtane Le Toumelin-Braizat & Maïa Chanrion & Gemma L. Kelly & Jia-Nan Gong & Donia M. Moujalled & Alain Bruno &, 2016. "The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models," Nature, Nature, vol. 538(7626), pages 477-482, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Lopez & Denis E. Reyna & Nadege Gitego & Felix Kopp & Hua Zhou & Miguel A. Miranda-Roman & Lars Ulrik Nordstrøm & Swathi-Rao Narayanagari & Ping Chi & Eduardo Vilar & Aristotelis Tsirigos & Evr, 2022. "Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Stephanie F. Rutter & Taeyoung Kang & Gemma F. Ryan & Bo Shi & Caitlin L. Vella & Pradeep Rajasekhar & Sean W. Cutter & Amy L. Hodge & Dilara C. Ozkocak & Ching-Seng Ang & Julian Ratcliffe & Katrina J, 2025. "The formation of the ‘footprint of death’ as a mechanism for generating large substrate-bound extracellular vesicles that mark the site of cell death," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Andreas Varkaris & Keshan Wang & Mannan Nouri & Nina Kozlova & Daniel R. Schmidt & Anastasia Stavridi & Seiji Arai & Nicholas Ambrosio & Larysa Poluben & Juan M. Jimenez-Vacas & Daniel Westaby & Julie, 2025. "BH3 mimetics targeting BCL-XL have efficacy in solid tumors with RB1 loss and replication stress," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    4. Thomas M. DeAngelo & Utsarga Adhikary & Kyle J. Korshavn & Hyuk-Soo Seo & Clara R. Brotzen-Smith & Christina M. Camara & Sirano Dhe-Paganon & Gregory H. Bird & Thomas E. Wales & Loren D. Walensky, 2025. "Structural insights into chemoresistance mutants of BCL-2 and their targeting by stapled BAD BH3 helices," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. repec:plo:pbio00:0060299 is not listed on IDEAS
    6. Jaskaren Kohli & Chen Ge & Eleni Fitsiou & Miriam Doepner & Simone M. Brandenburg & William J. Faller & Todd W. Ridky & Marco Demaria, 2022. "Targeting anti-apoptotic pathways eliminates senescent melanocytes and leads to nevi regression," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Ella N. Hoogenboezem & Shrusti S. Patel & Justin H. Lo & Ashley B. Cavnar & Lauren M. Babb & Nora Francini & Eva F. Gbur & Prarthana Patil & Juan M. Colazo & Danielle L. Michell & Violeta M. Sanchez &, 2024. "Structural optimization of siRNA conjugates for albumin binding achieves effective MCL1-directed cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Sayan Chakraborty & Divyaleka Sampath & Melissa Ong Yu Lin & Matthew Bilton & Cheng-Kuang Huang & Mui Hoon Nai & Kizito Njah & Pierre-Alexis Goy & Cheng-Chun Wang & Ernesto Guccione & Chwee-Teck Lim &, 2021. "Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Hudie Wei & Haolan Wang & Genxin Wang & Lingzhi Qu & Longying Jiang & Shuyan Dai & Xiaojuan Chen & Ye Zhang & Zhuchu Chen & Youjun Li & Ming Guo & Yongheng Chen, 2023. "Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jo-Hsi Huang & Yuping Chen & William Y. C. Huang & Saman Tabatabaee & James E. Ferrell, 2024. "Robust trigger wave speed in Xenopus cytoplasmic extracts," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Junguang Liao & Yuping Huang & Fuju Sun & Chenggong Zheng & Yifeng Yao & Cui Zhang & Chenhe Zhou & Xingen Zhang & Mengrui Wu & Guiqian Chen, 2025. "Nf2-FAK signaling axis is critical for cranial bone ossification and regeneration," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    12. Willemijn Breunis & Eva Brack & Anna C. Ehlers & Ingrid Bechtold & Samanta Kisele & Jakob Wurth & Lieke Mous & Dorita Zabele & Fabio Steffen & Felina Zahnow & Christian Britschgi & Lorenz Bankel & Chr, 2025. "Patient-derived tumoroids from CIC::DUX4 rearranged sarcoma identify MCL1 as a therapeutic target," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    13. repec:plo:pone00:0001469 is not listed on IDEAS
    14. Dongwen Lv & Pratik Pal & Xingui Liu & Yannan Jia & Dinesh Thummuri & Peiyi Zhang & Wanyi Hu & Jing Pei & Qi Zhang & Shuo Zhou & Sajid Khan & Xuan Zhang & Nan Hua & Qingping Yang & Sebastian Arango & , 2021. "Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    15. Martina Troiani & Manuel Colucci & Mariantonietta D’Ambrosio & Ilaria Guccini & Emiliano Pasquini & Angelica Varesi & Aurora Valdata & Simone Mosole & Ajinkya Revandkar & Giuseppe Attanasio & Andrea R, 2022. "Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Margaret A. Potts & Shinsuke Mizutani & Yexuan Deng & Srimayee Vaidyanathan & Keziah E. Ting & Göknur Giner & Shruti Sridhar & Girija Shenoy & Yang Liao & Sarah T. Diepstraten & Andrew J. Kueh & Marti, 2025. "Genome-wide in vivo CRISPR screens identify GATOR1 complex as a tumor suppressor in Myc-driven lymphoma," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Preeti Sahu & Sara Monteiro-Ferreira & Sara Canato & Raquel Maia Soares & Adriana Sánchez-Danés & Edouard Hannezo, 2025. "Mechanical control of cell fate decisions in the skin epidermis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Mikaela L. Follmer & Trevor J. Isner & Yunus H. Ozekin & Claire H. Levitt & Carolyn L. Burek & Richard K. P. Benninger & Emily Anne Bates, 2024. "Depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchymal cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Shamim Naghdi & Piyush Mishra & Soumya Sinha Roy & David Weaver & Ludivine Walter & Erika Davies & Anil Noronha Antony & Xuena Lin & Gisela Moehren & Mark A. Feitelson & Christopher A. Reed & Tullia L, 2025. "VDAC2 and Bak scarcity in liver mitochondria enables targeting hepatocarcinoma while sparing hepatocytes," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    20. Daniel Jun-Kit Hu & Jina Yun & Justin Elstrott & Heinrich Jasper, 2021. "Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    21. Alicia C. Borgeaud & Iva Ganeva & Calvin Klein & Amandine Stooss & Daniela Ross-Kaschitza & Liyang Wu & Joel S. Riley & Stephen W. G. Tait & Thomas Lemmin & Thomas Kaufmann & Wanda Kukulski, 2025. "Large transient assemblies of Apaf1 constitute the apoptosome in cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    22. Fengwei Li & Junjie Liu & Chao Liu & Ziyan Liu & Xiangda Peng & Yinyue Huang & Xiaoyu Chen & Xiangnan Sun & Sen Wang & Wei Chen & Dan Xiong & Xiaotong Diao & Sheng Wang & Jingjing Zhuang & Chuanliu Wu, 2024. "Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-XL by engaging a single-residue discrepancy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26613-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.